A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Soluble epoxide hydrolase inhibition with t-TUCB alleviates liver fibrosis and portal pressure in carbon tetrachloride-induced cirrhosis in rats. | LitMetric

Soluble epoxide hydrolase inhibition with t-TUCB alleviates liver fibrosis and portal pressure in carbon tetrachloride-induced cirrhosis in rats.

Clin Res Hepatol Gastroenterol

Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 201999 Shanghai, China. Electronic address:

Published: April 2018

Background/aims: Fibrosis and increased intrahepatic vascular resistance are the hallmarks of chronic inflammatory disorders of the liver and cirrhosis. Inhibitors of the enzyme soluble epoxide hydrolase reduce fibrosis in several disease models. The present study aimed at investigating the effects of soluble epoxyhydrolase inhibition with t-TUCB in tetrachloride-induced cirrhosis in rats.

Methods: The models were established by CCl (2ml/kg) given subcutaneously for 14 weeks. t-TUCB was concomitantly administered from the tenth week of modelling time. After the models were successfully built, the rats were anesthetized with sodium phenobarbital and portal pressure was determined in the groups. After that, the rats were killed and part of liver tissues were taken for histological analysis. In addition, the levels of intrahepatic inflammatory message factors were measured using real-time polymerase chain reaction (PCR) analysis. The remaining liver samples were processed for assessment of oxidative stress.

Results: t-TUCB administration significantly attenuated portal pressure relative to CCl-only rats. This improvement was associated with decreased deposition of collagen in liver, which was supported by reduced mRNA expression of α-smooth muscle actin (α-SMA), Collagen I, Collagen III, transforming growth factor (TGF)-β and tissue inhibitor of metalloproteinase-1 (TIMP-1) and increased matrix metalloproteinase-1, -13 (MMP-1, -13) mRNA expression. In addition, t-TUCB decreased the levels of proinflammatory cytokines, including IL-1β, IL-6, IL-10, tumor necrosis factor-α (TNF-α) and NF-κB, within cirrhotic hepatic tissue. Meanwhile, oxidative stress was also alleviated following inhibition of sEH in CCl-induced models, as evidenced by down-regulated levels of malondialdehyde (MDA) and up-regulated levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px).

Conclusion: The soluble epoxyhydrolase inhibitor, t-TUCB alleviates liver fibrosis and portal hypertension through attenuation of inflammatory response and oxidative stress in tetrachloride induced cirrhosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinre.2017.09.001DOI Listing

Publication Analysis

Top Keywords

portal pressure
12
soluble epoxide
8
epoxide hydrolase
8
inhibition t-tucb
8
t-tucb alleviates
8
alleviates liver
8
liver fibrosis
8
fibrosis portal
8
tetrachloride-induced cirrhosis
8
soluble epoxyhydrolase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!