Objective: The mitochondrial uncoupling agent 2,4-dinitrophenol (DNP), historically used as a treatment for obesity, is known to cross the blood-brain-barrier, but its effects on central neural circuits controlling body weight are largely unknown. As hypothalamic melanocortin neuropeptide Y/agouti-related protein (NPY/AgRP) and pro-opiomelanocortin (POMC) neurons represent key central regulators of food intake and energy expenditure we investigated the effects of DNP on these neurons, food intake and energy expenditure.
Method: C57BL/6 and melanocortin-4 receptor (MC4R) knock-out mice were administered DNP intracerebroventricularly (ICV) and the metabolic changes were characterized. The specific role of NPY and POMC neurons and the ionic mechanisms mediating the effects of uncoupling were examined with in vitro electrophysiology performed on NPY hrGFP or POMC eGFP mice.
Results: Here we show DNP-induced differential effects on melanocortin neurons including inhibiting orexigenic NPY and activating anorexigenic POMC neurons through independent ionic mechanisms coupled to mitochondrial function, consistent with an anorexigenic central effect. Central administration of DNP induced weight-loss, increased BAT thermogenesis and browning of white adipose tissue, and decreased food intake, effects that were absent in MC4R knock-out mice and blocked by the MC4R antagonist, AgRP.
Conclusion: These data show a novel central anti-obesity mechanism of action of DNP and highlight the potential for selective melanocortin mitochondrial uncoupling to target metabolic disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5641603 | PMC |
http://dx.doi.org/10.1016/j.molmet.2017.07.002 | DOI Listing |
J Physiol
December 2024
Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
Although mammals resist both acute weight loss and weight gain, the neural circuitry mediating bi-directional defense against weight change is incompletely understood. Global constitutive deletion of the melanocortin-3-receptor (MC3R) impairs the behavioural response to both anorexic and orexigenic stimuli, with MC3R knockout mice demonstrating increased weight gain following anabolic challenges and increased weight loss following anorexic challenges (i.e.
View Article and Find Full Text PDFBMC Biol
December 2024
Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.
Background: Epidemiologic researches show that short sleep duration may affect feeding behaviors resulting in higher energy intake and increased risk of obesity, but the further mechanisms that can interpret the causality remain unclear. The circadian rhythm is fine-tuned by the suprachiasmatic nucleus (SCN) as the master clock, which is essential for driving rhythms in food intake and energy metabolism through neuronal projections to the arcuate nucleus (ARC) and paraventricular nucleus (PVN).
Results: We showed that chronic SD-induced aberrant expressions of AgRP/NPY and POMC attributed to compromised JAK/STAT3 signals and reduced energy expenditure in the mice, which can be rescued with AAV-genetic overexpression of BMAL1 into SCN.
Exp Mol Pathol
December 2024
College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750000, China; Key Laboratory of Modernization of Minority Medicine, Ministry of Education, Ningxia Medical University, Yinchuan 750000, China. Electronic address:
Male infertility is most commonly caused by oligozoospermia, and its pathogenesis is still poorly understood at the molecular level. This study used RNA sequencing (RNA-Seq) technology to identify candidate genes and regulatory pathways that regulate semen quality in the hypothalamic, pituitary, and testicular tissues of healthy rats and Adenine-induced oligozoospermia model rats. Semen quality testing and histological analysis of testicular tissues were performed on both groups of rats.
View Article and Find Full Text PDFNutrients
November 2024
Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Takara-machi 13-1, Kanazawa 920-8040, Japan.
Excessive consumption of vegetable oils such as soybean and canolla oils containing ω-6 polyunsaturated fatty acids is considered one of the most important epidemiological factors leading to the progression of lifestyle-related diseases. However, the underlying mechanism of vegetable-oil-induced organ damage is incompletely elucidated. Since proopiomelanocortin (POMC) neurons in the hypothalamus are related to the control of appetite and energy expenditure, their cell degeneration/death is crucial for the occurrence of obesity.
View Article and Find Full Text PDFVet J
December 2024
College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:
During the periparturient period, dairy cows experience negative energy balance due to reduced feed intake, leading to adipose tissue breakdown, liver damage, and fat accumulation. This study examined the gut-liver-brain axis to explore the link between fatty liver disease, changes in hypothalamic appetite-related neurons, and microbiome shifts in dairy cows. Thirty cows were monitored, with daily DMI recordings and blood sampling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!