A novel magnetically recoverable thioporphyrazine catalyst (CoPz(S-Bu)/SiO@FeO) was prepared by immobilization of the cobalt octkis(butylthio) porphyrazine complex (CoPz(S-Bu)) on silica-coated magnetic nanospheres (SiO@FeO). The composite CoPz(S-Bu)/SiO@FeO appeared to be an active catalyst in the oxidation of benzyl alcohol in aqueous solution using hydrogen peroxide (HO) as oxidant under Xe-lamp irradiation, with 36.4% conversion of benzyl alcohol, about 99% selectivity for benzoic acid and turnover number (TON) of 61.7 at ambient temperature. The biomimetic catalyst CoPz(S-Bu) was supported on the magnetic carrier SiO@FeO so as to suspend it in aqueous solution to react with substrates, utilizing its lipophilicity. Meanwhile the CoPz(S-Bu) can use its unique advantages to control the selectivity of photocatalytic oxidation without the substrate being subjected to deep oxidation. The influence of various reaction parameters on the conversion rate of benzyl alcohol and selectivity of benzoic acid was investigated in detail. Moreover, photocatalytic oxidation of substituted benzyl alcohols was obtained with high conversion and excellent selectivity, specifically conversion close to 70%, selectivity close to 100% and TON of 113.6 for para-position electron-donating groups. The selectivity and eco-friendliness of the biomimetic photocatalyst give it great potential for practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jes.2017.05.044 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!