A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Zinc silicate mineral-coated scaffold improved in vitro osteogenic differentiation of equine adipose-derived mesenchymal stem cells. | LitMetric

In current study we aimed to coat the PLLA scaffold with zinc (Zn) silicate mineral nanoparticles. Then, using equine adipose-derived stem cells (ASCs) we intended to compare the osteogenic induction potency of Zn silicate mineral-coated PLLA scaffold with uncoated PLLA scaffold and tissue culture plastic (TCPS). Adipose tissues were collected from 3 horses, and isolation of ASCs was achieved by enzymatic digestion. PLLA scaffold was successfully prepared using a phase separation method and coated with Zn silicate mineral nanoparticles. The coating efficiency was then characterized by scanning electron microscopy and further evaluated with the application of fourier transform infrared microscopic imaging. Viability and growth characteristics of ASCs on TCPS, uncoated and coated PLAA scaffolds were investigated by MTT assay. Alizarin Red staining was performed for determination of calcium deposition following the osteogenic induction. Furthermore, other common osteogenic markers such as alkaline phosphatase (ALP) activity, calcium content, as well as osteogenic (Runx2, ALP, osteonectin, and collagen I) marker genes were also evaluated. Our data showed that Zn silicate mineral nanoparticles was coated successfully on PLLA scaffold and such scaffold had no detrimental effect on cell growth rate as indicated by MTT assay. Moreover, ASCs that differentiated on Zn silicate mineral-coated PLLA scaffold indicated higher ALP activity, more calcium content, and higher expression of bone-related genes than that on uncoated PLLA scaffold and TCPS. Adequate proliferation rate and higher expression of osteogenic markers of stem cells, provides this scaffold as a suitable substrate to support proliferation and differentiation of ASCs in equine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rvsc.2017.09.015DOI Listing

Publication Analysis

Top Keywords

plla scaffold
28
silicate mineral-coated
12
stem cells
12
silicate mineral
12
mineral nanoparticles
12
scaffold
10
zinc silicate
8
equine adipose-derived
8
osteogenic induction
8
mineral-coated plla
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!