The synthesis, characterization, ultrafast dynamics, and nonlinear spectroscopy of 30 nm nanospheres of brilliant green-bis(pentafluoroethylsulfonyl)imide ([BG][BETI]) in water are reported. These thermally stable nanoparticles are derived from a group of uniform materials based on organic salts (nanoGUMBOS) that exhibit enhanced near-infrared emission compared with the molecular dye in water. The examination of ultrafast transient absorption spectroscopy results reveals that the overall excited-state relaxation lifetimes of [BG][BETI] nanoGUMBOS are longer than the brilliant green molecular dye in water due to steric hindrance of the torsional degrees of freedom of the phenyl rings around the central carbon. Furthermore, the second harmonic generation signal of [BG][BETI] nanoGUMBOS is enhanced by approximately 7 times and 23 times as compared with colloidal gold nanoparticles of the same size and the brilliant green molecular dye in water, respectively. A very clear third harmonic generation signal is observed from the [BG][BETI] nanoGUMBOS but not from either the molecular dye or the gold nanoparticles. Overall, these results show that [BG][BETI] nanoGUMBOS exhibit altered ultrafast and nonlinear spectroscopy that is beneficial for various applications including nonlinear imaging probes, biomedical imaging, and molecular sensing.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4994712DOI Listing

Publication Analysis

Top Keywords

molecular dye
16
[bg][beti] nanogumbos
16
nonlinear spectroscopy
12
dye water
12
ultrafast nonlinear
8
nanogumbos enhanced
8
enhanced near-infrared
8
near-infrared emission
8
nanogumbos exhibit
8
brilliant green
8

Similar Publications

We present novel fluorescent cholesteryl probes (CNDs) with a modular design based on the solvatochromic 1,8-phthalimide scaffold. We have explored how different modules-linkers and head groups-affect the ability of these probes to integrate into lipid membranes and how they distribute intracellularly in mouse astrocytes and fibroblasts targeting lysosomes and lipid droplets. Each compound was assessed for its solvatochromic behavior in organic solvents and model membranes.

View Article and Find Full Text PDF

Molecular basis of HO/O/OH discrimination during electrochemical activation of DyP peroxidases: The critical role of the distal residues.

J Inorg Biochem

December 2024

Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; Instituto de Química Física de Los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina. Electronic address:

Here, we show that the replacement of the distal residues Asp and/or Arg of the DyP peroxidases from Bacillus subtilis and Pseudomonas putida results in functional enzymes, albeit with spectroscopically perturbed active sites. All the enzymes can be activated either by the addition of exogenous HO or by in situ electrochemical generation of the reactive oxygen species (ROS) OH, O and HO. The latter method leads to broader and upshifted pH-activity profiles.

View Article and Find Full Text PDF

Immunofluorescence is highly dependent on antibody-antigen interactions for accurate visualization of proteins and other biomolecules within cells. However, obtaining antibodies with high specificity and affinity for their target proteins can be challenging, especially for targets that are complex or naturally present at low levels. Therefore, we developed AptaFluorescence, a protocol that utilizes fluorescently labeled aptamers for in vitro biomolecule visualization.

View Article and Find Full Text PDF

This study investigates the effects of homopolymer additives and kinetic traps on the self-assembly of poly(ethylene glycol)-b-poly(lactide) (PEG-PLA) block copolymer (BCP) nanostructures in aqueous environments. By using non-adsorbing PEG homopolymers to kinetically trap PEG-PLA nanostructures, we demonstrate that varying the concentration and molecular weight of the added PEG induces a reversible micelle-to-vesicle transition. This transition is primarily driven by changes in the molecular geometry of the PEG-PLA BCPs due to excluded volume screening effects.

View Article and Find Full Text PDF

BODIPY-Based Ratiometric Fluorescent Probe for Sensing Peroxynitrite in Inflammatory Cells and Tissues.

Biosensors (Basel)

December 2024

State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.

Peroxynitrite (ONOO) plays an important role in many physiological and pathological processes. Excessive ONOO in cells leads to oxidative stress and inflammation. However, precise monitoring of ONOO levels in specific organelles (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!