In the present work, we have evaluated the effect of three different types of radiation: UVC (254±5nm), UVA (365±20nm) and visible (420±20nm) on different morphological and biological functions of Toxoplasma gondii tachyzoites. Briefly, UVC and UVA showed an inhibitory effect on parasite invasion in a dose-dependent manner. UVC showed the strongest effect inducing both structural damage (antigens) and functional inhibition (i.e., invasion and replication). On its own, visible light induces a quite distinctive and selective pattern of parasite-attenuation. This type of incident radiation inhibits the replication of the parasite affecting neither the capability of invasion/attachment nor the native structure of proteins (antigens) on parasites. Such effects are a consequence of photosensitized processes where phenol red might act as the active photosensitizer. The potential uses of the methodologies investigated herein are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphotobiol.2017.10.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!