Neurotrophic function of phytochemicals for neuroprotection in aging and neurodegenerative disorders: modulation of intracellular signaling and gene expression.

J Neural Transm (Vienna)

Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan.

Published: December 2017

Bioactive compounds in food and beverages have been reported to promote health and prevent age-associated decline in cognitive, motor and sensory activities, and emotional function. Phytochemicals, a ubiquitous class of plant secondary metabolites, protect neuronal cells by interaction with cellular activities, in addition to the antioxidant and anti-inflammatory function. In aging and age-associated neurodegenerative disorders, phytochemicals protect neuronal cells by neurotrophic factor-mimic activity, in addition to suppression of apoptosis signaling in mitochondria. This review presents the cellular mechanisms underlying anti-apoptotic function and neurotrophic function of phytochemicals in the brain. Phytochemicals bind to receptors of neurotrophic factors, and also receptors for γ-aminobutyric acid, acetylcholine, serotonin, and glutamate and estrogen, and activate downstream signal pathways. Phytochemicals also directly intervene intracellular signaling molecules to modify the brain function. Finally, phytochemicals enhance the endogenous biosynthesis of genes coding anti-apoptotic Bcl-2 and neurotrophic factors, such as brain-derived and glial cell line-derived neurotrophic factor. The gene induction may play a major role in the neuroprotective function of dietary compounds shown by epidemiological studies. Quantitative measurement of neurotrophic factors induced by phytochemicals in the serum, cerebrospinal fluid, and other clinical samples is proposed as a surrogate assay method to evaluate the neuroprotective potency. Development of novel neuroprotective compounds is expected among compounds chemically synthesized from the brain-permeable basic structure of phytochemicals.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00702-017-1797-5DOI Listing

Publication Analysis

Top Keywords

function phytochemicals
12
neurotrophic factors
12
phytochemicals
9
neurotrophic function
8
neurodegenerative disorders
8
intracellular signaling
8
protect neuronal
8
neuronal cells
8
neurotrophic
7
function
6

Similar Publications

In vivo Differential Effects of Extractable and Non-Extractable Phenolic Compounds from Grape Pomace on the Regulation of Obesity and Associated Metabolic Alterations.

Plant Foods Hum Nutr

January 2025

Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Qro., 76010, México.

Grape pomace (GP) is a by-product rich in phytochemicals, including extractable polyphenols (EPPs) and non-extractable polyphenols (NEPPs), which have distinct metabolic fates that may affect their biological activities. The benefits of GP have been reported in relation to obesity and its comorbidities, particularly when administered preventively focusing on EPPs. Therefore, the aim of this study was to investigate the effects of EPPs and NEPPs from GP as a treatment for obesity and its associated metabolic alterations.

View Article and Find Full Text PDF

Background: Diabetes mellitus (DM) poses a major risk to human health due to an array of implications, one of which is a detrimental effect on the testicular and reproductive functions. Euphorbia heterophylla is widely recognized for its medicinal properties worldwide.

Methods And Findings: The objective of this study was to profile E.

View Article and Find Full Text PDF

Alzheimer's disease is a neurodegenerative disorder that impairs neurocognitive functions. Acetylcholinesterase, Butyrylcholinesterase, Monoamine Oxidase B, Beta-Secretase, and Glycogen Synthase Kinase Beta play central roles in its pathogenesis. Current medications primarily inhibit AChE but fail to halt or reverse disease progression due to the multifactorial nature of Alzheimer's.

View Article and Find Full Text PDF

Background: A biocompatible polymeric nanoparticle, TQ-PLGA-PF68, was developed through the interaction of the phytochemical thymoquinone (TQ) encapsulated in poly(L-lactide-co-glycolide)-b-poly(ethylene glycol) (PLGA-PEG) with Pluronics F68. So far, this combination has not been assessed on breast cancer cells resistant to anti-cancer drugs. Therefore, this study aimed to assess the cell death caused by TQ-PLGA-PF68 nanoparticles, particularly in resistant breast cancer cell lines expressing estrogen receptor (ER) positivity, such as TamR MCF-7.

View Article and Find Full Text PDF

The widespread reliance on single-use plastics (SUPs) has fostered a global throwaway culture, especially in the food packaging industry, where convenience and low cost have driven their adoption, posing serious environmental threats, particularly to marine ecosystems and biodiversity. Edible and ecofriendly packaging made from millet, specifically sorghum ( () Moench), is a promising solution to mitigate SUP consumption and promote sustainability. This study explores the development of edible sorghum bowls, enhanced through roasting and incorporating 3 g of hibiscus and rose flower powders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!