In this study, we develop an in vivo dielectric imaging technique that measures capacitance using pin-type electrode arrays. Compared to normal tissues, cancer tissues exhibit higher capacitance values, allowing us to image the cancer region and monitor the chemotherapeutic effects of cancer in real-time. A comparison with the histopathological results shows that the in vivo dielectric imaging technique is able to detect small tumors (<3 mm) and tumor-associated changes. In addition, we demonstrate that cancer and inflammation may be distinguished by measuring the capacitance images at different frequencies. In contrast, the positron emission tomography using 2-[F]-fluoro-2-deoxy-D-glucose was not capable of discriminating between cancer and inflammation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5640678 | PMC |
http://dx.doi.org/10.1038/s41598-017-13545-3 | DOI Listing |
Anal Chem
January 2025
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Ligand binding to membrane proteins initiates numerous therapeutic processes. Surface plasmon resonance (SPR), a popular method for analyzing molecular interactions, has emerged as a promising tool for in situ determination of membrane protein binding kinetics owing to its label-free detection, high surface sensitivity, and resistance to intracellular interference. However, the excitation of SPR relies on noble metal films, typically gold, which are biologically incompatible and can cause fluorescence quenching.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Faculty of Mechanics, University Politehnica of Timisoara, Piata Victoriei 2, 300006 Timisoara, Romania.
This study investigated silicone composites with distributed boron nitride platelets and carbon microfibers that are oriented electrically. The process involved homogenizing and dispersing nano/microparticles in the liquid polymer, aligning the particles with DC and AC electric fields, and curing the composite with IR radiation to trap particles within chains. This innovative concept utilized two fields to align particles, improving the even distribution of carbon microfibers among BN in the chains.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland.
Terahertz radiation patterns can be registered using various detectors; however, in most cases, the scanning resolution is limited. Thus, we propose an alternative method for the detailed scanning of terahertz light field distributions after passing simple and complex structures. Our method relies on using a dielectric waveguide to achieve better sampling resolution.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Institute of Technology, University of the National Education Commission, Podchorążych 2, 30-084 Kraków, Poland.
In this work, three composite materials based on Terfenol-D and PZT-type material were obtained with a classic sintering method using a combination of 0-3 phases, where the ferroelectric phase was doped PZT material (P) and the magnetic phase was Terfenol-D (T). The percentage of P and T components in the composites was variable, i.e.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China.
The polarization state of light is critical for biological imaging, acousto-optics, bio-navigation, and many other optical applications. Phase shifters are extensively researched for their applications in optics. The size of optical elements with phase delay that are made from natural birefringent materials is limited; however, fabricating waveplates from dielectric metamaterials is very complex and expensive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!