Deer are an iconic group of large mammals that originated in the Early Miocene of Eurasia (ca. 19 Ma). While there is some consensus on key relationships among their members, on the basis of molecular- or morphology-based analyses, or combined approaches, many questions remain, and the bony labyrinth has shown considerable potential for the phylogenetics of this and other groups. Here we examine its shape in 29 species of living and fossil deer using 3D geometric morphometrics and cladistics. We clarify several issues of the origin and evolution of cervids. Our results give new age estimates at different nodes of the tree and provide for the first time a clear distinction of stem and crown Cervidae. We unambiguously attribute the fossil Euprox furcatus (13.8 Ma) to crown Cervidae, pushing back the origin of crown deer to (at least) 4 Ma. Furthermore, we show that Capreolinae are more variable in bony labyrinth shape than Cervinae and confirm for the first time the monophyly of the Old World Capreolinae (including the Chinese water deer Hydropotes) based on morphological characters only. Finally, we provide evidence to support the sister group relationship of Megaloceros giganteus with the fallow deer Dama.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5640792 | PMC |
http://dx.doi.org/10.1038/s41598-017-12848-9 | DOI Listing |
Int J Mol Sci
December 2024
Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA 90033, USA.
Novel therapeutic delivery systems and delivery methods to the inner ear are necessary to treat hearing loss and inner ear disorders. However, numerous barriers exist to therapeutic delivery into the bone-encased and immune-privileged environment of the inner ear and cochlea, which makes treating inner ear disorders challenging. Nanoparticles (NPs) are a type of therapeutic delivery system that can be engineered for multiple purposes, and posterior semicircular canal (PSCC) infusion is a method to directly deposit them into the cochlea.
View Article and Find Full Text PDFBMC Ecol Evol
January 2025
College of Life Sciences, Qufu Normal University, Qufu, 273165, China.
Background: Semi-aquatic mammals represent a transitional phase in the evolutionary spectrum between terrestrial and aquatic mammals. The sense of balance is crucial for mammalian locomotion, and in semi-aquatic mammals, the structural foundation of this sense (the vestibular system) shows distinct morphological adaptations to both aquatic and terrestrial environments compared to their terrestrial counterparts. Despite this, the precise molecular mechanisms driving these adaptations remain elusive.
View Article and Find Full Text PDFSci Rep
January 2025
Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Chiba, Japan.
Migration routes and the depth patterns of anguillid eel larvae migrating long distances from spawning grounds in the ocean remain poorly understood. We used otolith stable isotope analysis to study the oceanic migrations of anguillid eels by reconstructing experienced water temperature histories of larvae. The otolith stable oxygen isotopes (δO) of recruited Anguilla japonica glass eels were analyzed to assess the relationship with the experienced water temperature of the early larval stage in laboratory experiments.
View Article and Find Full Text PDFStem Cell Reports
December 2024
Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Electronic address:
The mechanical properties in the inner ear microenvironment play a key role in its patterning during embryonic development. To recapitulate inner ear development in vitro, three-dimensional tissue engineering strategies including the application of representative tissue models and scaffolds are of increasing interest. Human inner ear organoids are a promising model to recapitulate developmental processes; however, the current protocol requires Matrigel that contains ill-defined extracellular matrix components.
View Article and Find Full Text PDFOtol Neurotol
February 2025
Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA.
Objective: To compare the diagnostic capability of Pöschl reformations created from temporal bone CT (TBCT) and high-resolution noncontrast CT head exams (HR-NECTH) to detect and classify superior semicircular canal (SSC) abnormalities.
Study Design: Retrospective case review.
Setting: Tertiary referral center.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!