A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Uranium in agricultural soils and drinking water wells on the Swiss Plateau. | LitMetric

Uranium in agricultural soils and drinking water wells on the Swiss Plateau.

Environ Pollut

Laboratory of the Canton of Bern, Muesmattstrasse 19, 3012 Bern, Switzerland.

Published: February 2018

Mineral phosphorus fertilizers are regularly applied to agricultural sites, but their uranium (U) content is potentially hazardous to humans and the environment. Fertilizer-derived U can accumulate in the soil, but might also leach to ground-, spring and surface waters. We sampled 19 mineral fertilizers from the canton of Bern and soils of three arable and one forest reference sites at each of four locations with elevated U concentrations (7-28 μg L) in nearby drinking water wells. The total U concentrations of the fertilizers were measured. The soils were analysed at three depth intervals down to 1 m for general soil parameters, total Cd, P, U and NaHCO-extractable U concentrations, and U activity ratios (AR). The U concentrations and AR values of the drinking water samples were also measured. A theoretical assessment showed that fertilizer-derived U may cause high U concentrations in leaching waters (up to approx. 25 μg L), but normally contributes only a small amount (approx. 0-3 μg L). The arable soils investigated showed no significant U accumulation compared to the forest sites. The close positive correlation of AR with NaHCO-extractable U (R = 0.7, p < 0.001) indicates that application of fertilizer can increase the extractable U pool. The lack of depth gradients in the soil U concentrations (1.5-2.7 mg kg) and AR (0.90-1.06) ratios are inconsistent with the accumulation of U in the surface soil, and might indicate some leaching of fertilizer-derived U. The AR values in the water samples were close to 1, possibly suggesting an influence of fertilizer-derived U. However, based on findings from the literature and considering the heterogeneity of the catchment area, the agricultural practices, and the comparatively long distance to the groundwater, we conclude that fertilizer-derived U makes only a minor contribution to the elevated U concentrations in the water samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2017.09.061DOI Listing

Publication Analysis

Top Keywords

drinking water
12
water wells
8
concentrations
5
uranium agricultural
4
soils
4
agricultural soils
4
soils drinking
4
wells swiss
4
swiss plateau
4
plateau mineral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!