Plasmonic anisotropic nanoparticles possess a number of hot spots on their surface due to the presence of sharp edges, tips or vertices, leading to a high electric field strength surrounding the nanostructures. In this paper, we explore different plasmonic nanostructures, including anisotropic gold nanostars (AuNSts) and spherical gold nanoparticles, in surface-enhanced infrared absorption spectroscopy (SEIRAS) in an attenuated total reflection (ATR) configuration. In our experiments, we observed up to 10-times enhancement of the infrared (IR) absorption of thioglycolic acid (TGA) and up to 2-times enhancement of signals for bovine serum albumin (BSA) protein on plasmonic nanostructure-based films deposited on a silicon (Si) internal reflection element (IRE) compared to bare Si IRE. The dependence of the observed enhancement on the amount of AuNSts present at the surface of the IRE has been demonstrated. Quantitative studies with both, TGA and BSA were performed, observing that the SEIRA signal can be correlated to the concentration of analyte molecules present within the evanescent field. The calibration curves in the presence of the AuNSts showed enhanced sensitivity as compared with the bare Si IRE. We finally compare efficiencies of anisotropic AuNSts and spherical citrate-capped and "bare" laser-synthesized gold nanoparticles as SEIRAS substrates for the detection of TGA and BSA. The signal obtained from AuNSts was at least 2 times higher for TGA molecules in comparison with spherical gold nanoparticles, which was explained by a more efficient generation of hot spots on anisotropic surface due to the presence of sharp edges, tips or vertices, leading to a high electric field strength surrounding the AuNSts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2017.07.045 | DOI Listing |
Sci Rep
December 2024
Department of Urology, Urological Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea.
Carbon dots (CDs) are versatile nanomaterials that are considered ideal for application in bioimaging, drug delivery, sensing, and optoelectronics owing to their excellent photoluminescence, biocompatibility, and chemical stability features. Nitrogen doping enhances the fluorescence of CDs, alters their electronic properties, and improves their functional versatility. N-doped CDs can be synthesized via solvothermal treatment of carbon sources with nitrogen-rich precursors; however, systematic investigations of their synthesis mechanisms have been rarely reported.
View Article and Find Full Text PDFFood Chem
December 2024
College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China. Electronic address:
The effects of dairy sterilization techniques (65 °C/30 min, 72 °C/15 s, 85 °C/15 s, 100 °C/5 min, and 121 °C/5 s) on the epigallocatechin-3-gallate-casein (EGCG-CS) complexes were investigated through the structural and functional characteristics in this work. Fourier transform infrared spectroscopy (FT-IR) detection showed the redshirting of the absorption peak suggested structural changes in the amide I area. Field emission scanning electron microscopy (FESEM) and viscosity measurements proved that treatments above 85 °C broke non-covalent bonds, leading to instability and low viscosity of EGCG-CS.
View Article and Find Full Text PDFGels
December 2024
Multimaterials and Interfaces Laboratory (LMI), CNRS UMR 5615, University Claude Bernard Lyon 1, University of Lyon, 6 rue Victor Grignard, 69622 Villeurbanne, France.
Temporomandibular disorders (TMD) are a public health problem that affects around 12% of the global population. The treatment is based on analgesics, non-steroidal anti-inflammatory, corticosteroids, anticonvulsants, or arthrocentesis associated with hyaluronic acid-based viscosupplementation. However, the use of hyaluronic acid alone in viscosupplementation does not seem to be enough to regulate the intra-articular inflammatory process.
View Article and Find Full Text PDFJ Biomed Phys Eng
December 2024
Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Background: Photothermal therapy (PTT) is one of the effective and non-invasive strategies which hold great promise for improving the treatment of cancer cells. PTT is based on activating a photosensitizer by infrared light irradiation and producing heat and reactive species and apoptosis in the tumor area.
Objective: The aim of this study was to investigate the effect of photothermal/chemotherapy on melanoma cancer cells using poly (2-amino phenol)/gold (P2AO/AuNPs) and doxorubicin (DOX).
Adv Mater
December 2024
School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, P. R. China.
The existence of residual small-size tumors after surgery is a major factor contributing to the high recurrence rate of glioblastoma (GBM). Conventional adjuvant therapeutics involving both chemotherapy and radiotherapy usually exhibit unsatisfactory efficacy and severe side effects. Recently, two-photon photodynamic therapy (TP-PDT), especially excited by the second near-infrared (NIR-II) light, offers an unprecedented opportunity to address this challenge, attributed to its combinational merits of PDT and TP excitation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!