Opisthorchis felineus is the etiological agent of opisthorchiasis in humans. O. felineus cytochrome P450 (OfCYP450) is an important enzyme in the parasite xenobiotic metabolism. To identify the potential anti-opisthorchid compound, we conducted a structure-based virtual screening of natural compounds from the ZINC database (n = 1,65,869) against the OfCYP450. The ligands were screened against OfCYP450 in four sequential docking modes that resulted in 361 ligands having better docking score. These compounds were evaluated for Lipinski and ADMET prediction, and 10 compounds were found to fit well with re-docking studies. After refinement by docking and drug-likeness analyses, four potential inhibitors (ZINC2358298, ZINC8790946, ZINC70707116, and ZINC85878789) were identified. These ligands with reference compounds (itraconazole and fluconazole) were further subjected to molecular dynamics simulation (MDS) and binding energy analyses to compare the dynamic structure of protein after ligand binding and the stability of the OfCYP450 and bound complexes. The binding energy analyses were also calculated. The results suggested that the compounds had a negative binding energy with -259.41, -110.09, -188.25, -163.30, -202.10, and -158.79 kJ mol for itraconazole, fluconazole, and compounds with IDs ZINC2358298, ZINC8790946, ZINC70707116, and ZINC85878789, respectively. These lead compounds displayed significant pharmacological and structural properties to be drug candidates. On the basis of MDS results and binding energy analyses, we concluded that ZINC8790946, ZINC70707116, and ZINC85878789 have excellent potential to inhibit OfCYP450.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2017.1392897DOI Listing

Publication Analysis

Top Keywords

binding energy
16
zinc8790946 zinc70707116
12
zinc70707116 zinc85878789
12
energy analyses
12
opisthorchis felineus
8
felineus cytochrome
8
cytochrome p450
8
zinc2358298 zinc8790946
8
itraconazole fluconazole
8
mds binding
8

Similar Publications

This manuscript details the application of Isothermal Titration Calorimetry (ITC) to characterize the kinetics of 3CL, the main protease from the Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2), and its inhibition by Ensitrelvir, a known non-covalent inhibitor. 3CL is essential for producing the proteins necessary for viral infection, which led to the COVID-19 pandemic. The ITC-based assay provided rapid and reliable measurements of 3CL activity, allowing for the direct derivation of the kinetic enzymatic constants K and k by monitoring the thermal power required to maintain a constant temperature as the substrate is consumed.

View Article and Find Full Text PDF

Molecular basis of hemoglobin binding and heme removal in .

Proc Natl Acad Sci U S A

January 2025

Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095.

To successfully mount infections, nearly all bacterial pathogens must acquire iron, a key metal cofactor that primarily resides within human hemoglobin. causes the life-threatening respiratory disease diphtheria and captures hemoglobin for iron scavenging using the surface-displayed receptor HbpA. Here, we show using X-ray crystallography, NMR, and in situ binding measurements that selectively captures iron-loaded hemoglobin by partially ensconcing the heme molecules of its α subunits.

View Article and Find Full Text PDF

Energetics of substrate transport in proton-dependent oligopeptide transporters.

Commun Chem

December 2024

Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

The PepT transporter mediates the transport of peptides across biological membranes. Despite advancements in structural biology, including cryogenic electron microscopy structures resolving PepT in different states, the molecular basis of peptide recognition and transport by PepT is not fully elucidated. In this study, we used molecular dynamics simulations, Markov State Models (MSMs), and Transition Path Theory (TPT) to investigate the transport mechanism of an alanine-alanine peptide (Ala-Ala) through the PepT transporter.

View Article and Find Full Text PDF

Diabetic nephropathy (DN) is one of the most common microvascular complications of diabetes mellitus. Colquhounia Root Tablet (CRT), one of the Tripterygium wilfordii Hook F. (TwHF)-based therapeutics, has exhibited various functions in DN.

View Article and Find Full Text PDF

Advances in the characterization of intrinsically disordered proteins (IDPs) have unveiled a remarkably complex and diverse interaction landscape, including coupled folding and binding, highly dynamic complexes, multivalent interactions, and even interactions between entirely disordered proteins. Here we review recent examples of IDP binding mechanisms elucidated by experimental techniques such as nuclear magnetic resonance spectroscopy, single-molecule Förster resonance energy transfer, and stopped-flow fluorescence. These techniques provide insights into the structural details of transition pathways and complex intermediates, and they capture the dynamics of IDPs within complexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!