An aberrant systemic artery supply results in recurrent infections in the abnormal lung lobe of intralobar pulmonary sequestration (ILS). The mechanisms underlying such persistent inflammation are unknown. Here, we hypothesize that alteration of an endothelial cell niche for alveolar epithelial cells results in the impaired proliferation potential of alveolar progenitor cells, leading to the defective defense mechanism in intralobar pulmonary sequestration. Paraffin sections of lung tissues from patients with intralobar pulmonary sequestration or from healthy controls were collected for analysis of alveolar epithelial alterations in intralobar pulmonary sequestration by quantitative RT-PCR or immunofluorescent staining. Differential transcripts were identified between human pulmonary artery endothelial cells and human aortic endothelial cells by microarray. Validation of microarray data by quantitative PCR analysis indicated that thrombospondin-1 expression level is low in near-lesion part but high in lesion part of ILS lobe as compared to healthy controls. 3-D matrigel culture was adopted to evaluate the regulation of alveolar progenitor cells by thrombospondin-1 and CD36. We found that the proliferative potential of alveolar type 2 stem/progenitor cells was impaired in intralobar pulmonary sequestration. Mechanistically, we discovered that endothelial thrombospondin-1 promotes alveolar type 2 cell proliferation through the interaction with CD36. These data demonstrate that alveolar stem cells are impaired in the abnormal lobe from patients with intralobar pulmonary sequestration and imply that restoring epithelial integrity can be beneficial for the future treatments of recurrent infections in lung pathologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5630297 | PMC |
http://dx.doi.org/10.18632/oncotarget.19952 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!