Genomic profiling has identified a subset of metabolic genes that are altered by 1,25-dihydroxyvitamin D (1,25D) in breast cells, including GLUL, the gene that encodes glutamine synthetase (GS). In this study, we explored the relevance of vitamin D modulation of GLUL and other metabolic genes in the context of glutamine utilization and dependence. We show that exposure of breast epithelial cells to glutamine deprivation or a GS inhibitor reduced growth and these effects were exacerbated by cotreatment with 1,25D. 1,25D downregulation of GLUL was sufficient to reduce abundance and activity of GS. Flow cytometry demonstrated that glutamine deprivation induced S phase arrest, likely due to reduced availability of glutamine for DNA synthesis. In contrast, 1,25D induced G0/G1 arrest, indicating that its effects are not solely due to reduced glutamine synthesis. Indeed, 1,25D also reduced expression of GLS1 and GLS2 genes, which code for glutaminases that shunt glutamine into the tricarboxylic acid (TCA) cycle. Consistent with reduced entry of glutamine into the TCA cycle, 1,25D inhibited glutamine oxidation and the metabolic response to exogenous glutamine as analyzed by Seahorse Bioscience extracellular flux assays. Effects of 1,25D on GLUL/GS expression and glutamine oxidation were retained in human mammary epithelial (HME) cells that express SV-40 (HME-LT cells) but not in those that express SV-40 and oncogenic H-Ras (HME-PR cells). Furthermore, HME-PR cells exhibited glutamine independence and expressed constitutively high levels of GLUL/GS, which were unaffected by 1,25D. Collectively, these data suggest that 1,25D alters glutamine availability, dependence, and metabolism in nontransformed and preneoplastic mammary epithelial cells in association with cell cycle arrest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5711383PMC
http://dx.doi.org/10.1210/en.2017-00238DOI Listing

Publication Analysis

Top Keywords

glutamine
15
mammary epithelial
12
epithelial cells
12
125d
9
glutamine synthetase
8
human mammary
8
cells
8
metabolic genes
8
glutamine deprivation
8
tca cycle
8

Similar Publications

The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology.

View Article and Find Full Text PDF

Neurodegeneration in Huntington's disease (HD) is accompanied by the aggregation of fragments of the mutant huntingtin protein, a biomarker of disease progression. A particular pathogenic role has been attributed to the aggregation-prone huntingtin exon 1 (HTTex1), generated by aberrant splicing or proteolysis, and containing the expanded polyglutamine (polyQ) segment. Unlike amyloid fibrils from Parkinson's and Alzheimer's diseases, the atomic-level structure of HTTex1 fibrils has remained unknown, limiting diagnostic and treatment efforts.

View Article and Find Full Text PDF

Best1 and Best2 are two members of the bestrophin family of anion channels critically involved in the prevention of retinal degeneration and maintenance of intraocular pressure, respectively. Here, we solved glutamate- and γ-aminobutyric acid (GABA)-bound Best2 structures, which delineate an intracellular glutamate binding site and an extracellular GABA binding site on Best2, respectively, identified extracellular GABA as a permeable activator of Best2, and elucidated the co-regulation of Best2 by glutamate, GABA and glutamine synthetase in vivo. We further identified multiple small molecules as activators of the bestrophin channels.

View Article and Find Full Text PDF

Circ-PDE1C/miR-766-3p/SGTB axis regulates the IL-1β-induced apoptosis, inflammation and oxidative stress in human chondrocytes.

Adv Rheumatol

December 2024

Department of Rehabilitation Medicine, Wuhan No.1 Hospital, 215 Zhongshan Avenue, Qiaokou District, Wuhan, Hubei, 430022, China.

Background: Osteoarthritis (OA) is a common degenerative joint disease. Circular RNA Phosphodiesterase 1 C (circ-PDE1C, hsa_circ_0134111) has participated in the IL-1β-induced chondrocyte damages. The objective of our study was to explore the molecular mechanism of circ-PDE1C.

View Article and Find Full Text PDF

Pleiotropic effects of mutant huntingtin on retinopathy in two mouse models of Huntington's disease.

Neurobiol Dis

December 2024

Department of Physiology & Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. Electronic address:

Huntington's disease (HD) is caused by the expansion of a CAG repeat, encoding a string of glutamines (polyQ) in the first exon of the huntingtin gene (HTTex1). This mutant huntingtin protein (mHTT) with extended polyQ forms aggregates in cortical and striatal neurons, causing cell damage and death. The retina is part of the central nervous system (CNS), and visual deficits and structural abnormalities in the retina of HD patients have been observed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!