The farnesoid X receptor (FXR) plays an important role in bile acid metabolism, intestinal homeostasis, and intestinal ischemia-reperfusion (I/R) injury. We aimed to clarify the potential effects of FXR on intestinal epithelial cell tolerance to intestinal I/R injury and reveal the underlying mechanisms. An intestinal I/R injury model was established by the occlusion of the superior mesenteric artery for ischemia for 1 h, followed by reperfusion for 4 h in C57BL/6 (wild type [WT]) and FXR mice. The small intestine injury was assessed by histological analysis. Diamine oxidase and TNF-α levels in the serum were measured. Expressions of Bcl-2, Bax, caspase-3, and cystathionine-γ-lyase (CSE) were determined by immunohostochemical staining. Oxygen-glucose deprivation/reperfusion (OGD/R) was used to make injury in cultured Caco-2 cells pretreated with FXR agonist (INT-747) or DL-propargylglycine (PAG) for 24 h. Cell viability and the expressions of NF-κB, TNF-α, and IL-6 were assessed. Compared with WT I/R mice, FXR knockout mice exacerbated intestinal I/R injury, intestinal epithelial apoptosis, and inflammatory response. The I/R injury in WT mice was alleviated with INT-747 pretreatment. CSE expression increased after intestinal I/R injury in WT but not in FXR mice. INT-747 enhanced Caco-2 cell viability and inhibited inflammatory response by blocking the NF-κB pathway after OGD/R injury, which was diminished by a CSE-specific inhibitor (PAG). Thus, we demonstrated that FXR activation enhances intestinal epithelial cell tolerance to I/R by suppressing the inflammatory response and NF-κB pathway via CSE mediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/SHK.0000000000001019 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
Intestinal ischemia-reperfusion injury (IIR/I) significantly increases morbidity and mortality. This study examines the therapeutic effects of geraniol (GNL), which is noted for its anti-inflammatory and antioxidant properties, on intestinal I/R injury in rats. Forty-nine male Wistar-Albino rats were divided into seven groups.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing, China.
Objective: Ischemia-reperfusion of the abdominal aorta often results in damage to distant organs, such as the heart and brain. This cellular heterogeneity within affected tissues complicates the roles of specific cell subsets in abdominal aorta occlusion model (AAO) injury. However, cell type-specific molecular pathology in the hippocampus after ischemia is poorly understood.
View Article and Find Full Text PDFExp Eye Res
January 2025
Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. Electronic address:
The abrupt and substantial elevation of intraocular pressure (IOP) in acute glaucoma induces retinal ischemia/reperfusion (I/R) injury, resulting in progressive retinal ganglion cell (RGC) death and irreversible visual impairment. PANoptosis, a form of regulated cell death consisting of pyroptosis, apoptosis and necroptosis, is reported to be involved in high IOP-induced RGC death. However, the precise mechanisms of RGC death remain unclear, and neuroinflammation is considered to play a vital role.
View Article and Find Full Text PDFBrain Res
January 2025
Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China. Electronic address:
Stroke remains a leading cause of disability and mortality worldwide, with mitochondrial dysfunction closely linked to ischemic injury. This study explores the Norad-Pum2-Mff axis as a key regulator of mitochondrial function following ischemia-reperfusion (I/R) injury. Using an oxygen-glucose deprivation/reoxygenation (OGD/R) model, Mff protein levels were significantly elevated post-OGD/R, while mRNA levels remained unchanged, suggesting post-transcriptional regulation.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, P. R. China.
Redox imbalance, including excessive production of reactive oxygen species (ROS) caused by mitochondrial dysfunction and insufficient endogenous antioxidant capacity, is the primary cause of myocardial ischemia‒reperfusion (I/R) injury. In the exploration of reducing myocardial I/R injury, it is found that protecting myocardial mitochondrial function after reperfusion not only reduces ROS bursts but also inhibits cell apoptosis triggered by the release of cytochrome c. Additionally, nuclear factor erythroid 2-related factor 2 (Nrf2) is considered a potential therapeutic target for treating myocardial I/R injury by enhancing the cellular antioxidant capacity through the induction of endogenous antioxidant enzymes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!