The role of ethylene on inducing plant resistance or susceptibility to certain fungal pathogens clearly depends on the plant pathogen interaction with little or no-information available focused on the apple-Penicillium interaction. Taken advantage that Penicillium expansum is the compatible pathogen and P. digitatum is the non-host of apples, the present study aimed at deciphering how each Penicillium spp. could interfere in the fruit ethylene biosynthesis at the biochemical and molecular level. The infection capacity and different aspects related to the ethylene biosynthesis were conducted at different times post-inoculation. The results show that the fruit ethylene biosynthesis was differently altered during the P. expansum infection than in response to other biotic (non-host pathogen P. digitatum) or abiotic stresses (wounding). The first symptoms of the disease due to P. expansum were visible before the initiation of the fruit ethylene climacteric burst. Indeed, the ethylene climacteric burst was reduced in response to P. expansum concomitant to an important induction of MdACO3 gene expression and an inhibition (ca. 3-fold) and overexpression (ca. 2-fold) of ACO (1-Aminocyclopropane-1-carboxylic acid oxidase) and ACS (1-Aminocyclopropane-1-carboxylic acid synthase) enzyme activities, indicating a putative role of MdACO3 in the P. expansum-apple interaction which may, in turn, be related to System-1 ethylene biosynthesis. System-1 is auto-inhibited by ethylene and is characteristic of non-climateric or pre-climacteric fruit. Accordingly, we hypothesise that P. expansum may 'manipulate' the endogenous ethylene biosynthesis in apples, leading to the circumvention or suppression of effective defences hence facilitating its colonization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2017.09.024 | DOI Listing |
Int J Nanomedicine
January 2025
College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, People's Republic of China.
Background: Cancer immunotherapy has achieved great success in breast cancer treatment in recent years. The Programmed Death-1 (PD-1) /Programmed Death-Ligand 1 (PD-L1) immune checkpoint pathway is among the most studied. BMS-1166, a PD-L1 inhibitor, can interfere with PD-1 and PD-L1 interaction.
View Article and Find Full Text PDFSci Rep
January 2025
College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
Ethylene is a signalling factor that plays a key role in the response of plants to abiotic stresses, such as cold stress. Recent studies have shown that the exogenous application of 1-aminocyclopropane-1-carboxylate (ACC), an ethylene promoter, affects plant cold tolerance. The cold-responsive specific gene DREB plays a crucial role in enhancing cold tolerance in plants by activating several cold-responsive (COR) genes.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China.
Salt stress is an environmental factor that limits plant seed germination, growth, and survival. We performed a comparative RNA sequencing transcriptome analysis during germination of the seeds from two cultivars with contrasting salt tolerance responses. A transcriptomic comparison between salt-tolerant cotton cv Jin-mian 25 and salt-sensitive cotton cv Su-mian 3 revealed both similar and differential expression patterns between the two genotypes during salt stress.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
The basic helix-loop-helix (bHLH) family members are involved in plant growth and development, physiological metabolism, and various stress response processes. is a major turpentine-producing and wood-producing tree in seasonally dry areas of southern China. Its economic and ecological values are well known.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
Glucose-6-phosphate isomerase (PGI), a key enzyme that catalyzes the reversible conversion of glucose-6-phosphate and fructose-6-phosphate, plays an important role in plant growth, development, and responses to abiotic stresses and pathogen infections. However, whether and how PGI modulates herbivore-induced plant defenses remain largely unknown. The Brown planthopper (BPH, ) is a devastating insect pest of rice, causing significant damage to rice plants through feeding, oviposition, and disease transmission, resulting in great yield losses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!