Scutellaria baicalensis Georgi (S. baicalensis), as a traditional Chinese herbal medicine, is an important component of several famous Chinese medicinal formulas for treating patients with diabetes mellitus. Baicalin (BG), a main bioactive component of S. baicalensis, has been reported to have antidiabetic effects. However, pharmacokinetic studies have indicated that BG has poor oral bioavailability. Therefore, it is hard to explain the pharmacological effects of BG in vivo. Interestingly, several reports show that BG is extensively metabolized in rats and humans. Therefore, we speculate that the BG metabolites might be responsible for the pharmacological effects. In this study, BG and its three metabolites (M1-M3) were examined their effects on glucose consumption in insulin resistant HepG-2 cells with a commercial glucose assay kit. Real-time PCR and western blot assay were used to confirm genes and proteins of interest, respectively. The results demonstrate that BG and its metabolites (except for M3) enhanced the glucose consumption which might be associated with inhibiting the expression of the key gluconeogenic genes, including glucose-6-phosphatase (G6Pase), phosphoenolypyruvate carboxykinase (PEPCK) and glucose transporter 2 (GLUT2). Further study found that BG and M1 could suppress hepatic gluconeogenesis via activation of the AMPK pathway, while M2 could suppress hepatic gluconeogenesis via activation of the PI3K/AKT signaling pathway. Taken together, our findings suggest that both BG and its metabolites have antihyperglycemic activities, and might be the active forms of oral doses of BG in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2017.09.049 | DOI Listing |
Free Radic Biol Med
January 2025
Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:
Aims/hypothesis: Emerging evidence underscored the significance of leucine-rich repeat-containing G protein-coupled receptor (LGR) 4 in endocrine and metabolic disorders. Despite this, its role in LGR4 in hepatic glucose metabolism remains poorly understood. In this study we set out to test whether LGR4 regulates glucose production in liver through a specific signaling pathway.
View Article and Find Full Text PDFThe antihyperglycemic activity of extracellular polysaccharopeptides (ePSP) obtained from Trametes versicolor (TV) strain LH-1 has been demonstrated in hepatic cells and diabetic animals. This study further investigated the mechanisms of T. versicolor-ePSP on regulating glucose metabolism, including insulin signaling molecules and glucose metabolism-associated enzymes, in the liver of rats with type 2 diabetes mellitus (T2DM).
View Article and Find Full Text PDFThe immune system shapes body metabolism, while interactions between peripheral neurons and immune cells control tissue homeostasis and immunity. However, whether peripheral neuroimmune interactions orchestrate endocrine system functions remains unexplored. After fasting, mice lacking type 2 innate lymphoid cells (ILC2s) displayed disrupted glucose homeostasis, impaired pancreatic glucagon secretion, and inefficient hepatic gluconeogenesis.
View Article and Find Full Text PDFCan J Physiol Pharmacol
January 2025
Western University Faculty of Health Sciences, School of Kinesiology, London, Ontario, Canada.
Aerobic exercise (AE) is associated with a significant hypoglycemia risk in individuals with type 1 diabetes mellitus (T1DM). However, the mechanisms in the liver and skeletal muscle governing exercise-induced hypoglycemia in T1DM are poorly understood. This study examined the effects of a 60-minute bout of AE on hepatic and muscle glucose metabolism in T1DM rats.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China.
Pumpkin extract has been shown to alleviate hyperglycemic symptoms by improving glucose metabolism disorders. However, the specific active components responsible for its hypoglycemic effects and the underlying molecular mechanisms remain unclear. In this study, db/db mice underwent a 4-week dietary intervention with two pumpkin flours (PF1 and PF2), total dietary fiber (TDF), soluble dietary fiber (SDF), and insoluble dietary fiber (IDF), with acarbose serving as a positive control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!