Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Accurate elucidation of genome wide protein-protein interactions is crucial for understanding the regulatory processes of the cell. High-throughput techniques, such as the yeast-2-hybrid (Y2H) assay, co-immunoprecipitation (co-IP), mass spectrometric (MS) protein complex identification, affinity purification (AP) etc., are generally relied upon to determine protein interactions. Unfortunately, each type of method is inherently subject to different types of noise and results in false positive interactions. On the other hand, precise understanding of proteins, especially knowledge of their functional associations is necessary for understanding how complex molecular machines function. To solve this problem, computational techniques are generally relied upon to precisely predict protein interactions. In this work, we present a novel method that combines structural and non-structural biological data to precisely predict protein interactions. The conceptual novelty of our approach lies in identifying and precisely associating biological information that provides substantial interaction clues. Our model combines structural and non-structural information using Bayesian statistics to calculate the likelihood of each interaction. The proposed model is tested on Saccharomyces cerevisiae's interactions extracted from the DIP and IntAct databases and provides substantial improvements in terms of accuracy, precision, recall and F1 score, as compared with the most widely used related state-of-the-art techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7mb00484b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!