TiC-Ti-Al mixed powders and TC4 titanium alloy foils were overlapped layer-by-layer in the graphite die. The TC4-based laminated composite sheets reinforced by Ti aluminide and carbide were successfully fabricated via spark plasma sintering (SPS) at 1100 °C with a well-bonded interface. The composite layers were mainly composed of TiAl, Ti₃Al, Ti₂AlC, and Ti₃AlC₂ phases. The carbides particles distributed in the matrix played an important role in the deflection of cracks and the passivation of microcracks. TC4 titanium alloy layers had an obvious effect on the stress distribution during the loading process, and provided an energy dissipation mechanism, which could improve the mechanical properties of the laminated composite sheets obviously. When the theoretical amount of Ti₂AlC was 20 wt %, the flexural strength and fracture toughness of the laminated composite sheets reached the maximum value in the arrester direction, which were 1428.79 MPa and 64.08 MPa·m, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666981PMC
http://dx.doi.org/10.3390/ma10101175DOI Listing

Publication Analysis

Top Keywords

laminated composite
12
composite sheets
12
flexural strength
8
strength fracture
8
fracture toughness
8
tc4-based laminated
8
reinforced aluminide
8
aluminide carbide
8
tc4 titanium
8
titanium alloy
8

Similar Publications

Smart textiles provide a significant technological advancement, but their development must balance traditional textile properties with electronic features. To address this challenge, this study introduces a flexible, electrically conductive composite material that can be fabricated using a continuous bi-component extrusion process, making it ideal for sensor electrodes. The primary aim was to create a composite for the filament's core, combining multi-walled carbon nanotubes (MWCNTs), polypropylene (PP), and thermoplastic elastomer (TPE), optimised for conductivity and flexibility.

View Article and Find Full Text PDF

Due to the complex and uncertain physics of lightning strike on carbon fiber-reinforced polymer (CFRP) laminates, conventional numerical simulation methods for assessing the residual strength of lightning-damaged CFRP laminates are highly time-consuming and far from pretty. To overcome these challenges, this study proposes a new prediction method for the residual strength of CFRP laminates based on machine learning. A diverse dataset is acquired and augmented from photographs of lightning strike damage areas, C-scan images, mechanical performance data, layup details, and lightning current parameters.

View Article and Find Full Text PDF

Characterization of Fatigue Properties of Fiber-Reinforced Polymer Composites Based on a Multiscale Approach.

Polymers (Basel)

January 2025

Department of Mechanical Engineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea.

This study presents a methodology for characterizing the constituent properties of composite materials by back-calculating from the laminate behavior under fatigue loading. Composite materials consist of fiber reinforcements and a polymer matrix, with the fatigue performance of the laminate governed by the interaction between these constituents. Due to the challenges in directly measuring the properties of individual fibers and the polymer matrix, a reverse-engineering approach was employed.

View Article and Find Full Text PDF

This paper experimentally investigates the impact response of composite laminates made with conventional and bio-based epoxy resin. Drop tower impact tests were conducted at varying energy levels, including repeated low-energy impacts, to evaluate perforation resistance. The laminates' residual strength and damage tolerance were assessed using the Damage Index (DI) and by analysing the resonance frequency variations through the Impulse Excitation Technique (IET).

View Article and Find Full Text PDF

This study presents the fabrication of a sustainable flexible humidity sensor utilizing chitosan derived from mealworm biomass as the primary sensing material. The chitosan-based humidity sensor was fabricated by casting chitosan and polyvinyl alcohol (PVA) films with interdigitated copper electrodes, forming a laminate composite suitable for real-time, resistive-type humidity detection. Comprehensive characterization of the chitosan film was performed using Fourier-transform infrared (FTIR) spectroscopy, contact angle measurements, and tensile testing, which confirmed its chemical structure, wettability, and mechanical stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!