Tactile perception is a feature benefiting reliable grasping and manipulation. This paper presents the design of an integrated fingertip force sensor employing an optical fiber based approach where applied forces modulate light intensity. The proposed sensor system is developed to support grasping of a broad range of objects, including those that are hard as well those that are soft. The sensor system is comprised of four sensing elements forming a tactile array integrated with the tip of a finger. We investigate the design configuration of a separate force sensing element with the aim to improve its measurement range. The force measurement of a single tactile element is based on a two-level displacement that is achieved thanks to a hybrid sensing structure made up of a stiff linear and flexible ortho-planar spring. An important outcome of this paper is a miniature tactile fingertip sensor that is capable of perceiving light contact, typically occurring during the initial stages of a grasp, as well as measuring higher forces, commonly present during tight grasps.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677244 | PMC |
http://dx.doi.org/10.3390/s17102337 | DOI Listing |
Small Methods
January 2025
School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
Flexible tactile sensors have received significant attention for use in wearable applications such as robotics, human-machine interfaces, and health monitoring. However, conventional tactile sensors face challenges in accurately measuring pressure because vertical deformation is induced by Poisson's ratio in situations where lateral strain is applied. This study shows a strain-insensitive flexible tactile sensor array without the crosstalk effect using a highly stretchable mesh.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.
Cognition relies on transforming sensory inputs into a generalizable understanding of the world. Mirror neurons have been proposed to underlie this process, mapping visual representations of others' actions and sensations onto neurons that mediate our own, providing a conduit for understanding. However, this theory has limitations.
View Article and Find Full Text PDFHum Brain Mapp
December 2024
Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Intracortical microstimulation (ICMS) is a method for restoring sensation to people with paralysis as part of a bidirectional brain-computer interface (BCI) to restore upper limb function. Evoking tactile sensations of the hand through ICMS requires precise targeting of implanted electrodes. Here we describe the presurgical imaging procedures used to generate functional maps of the hand area of the somatosensory cortex and subsequent planning that guided the implantation of intracortical microelectrode arrays.
View Article and Find Full Text PDFSmall
December 2024
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
In order to achieve interaction and collaboration with humans, robots need to have the ability for tactile perception of simulating human. Traditional methods use electrically connected sensors with complex arrays, leading to intricate wiring, high manufacturing costs, and demanding current environments. A flexible sensor with simple structure, easy preparation process, and low cost based on triboluminescence effect is proposed in this paper, which avoids the complex array and wiring of traditional sensors.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Programa de Doctorado en Ingeniería Mecatrónica, Departamento de Electrónica, Universidad de Málaga, 29071 Malaga, Spain.
This paper presents a contribution to the state of the art in the design of tactile sensing algorithms that take advantage of the characteristics of generalized sparse matrix-vector multiplication to reduce the area, power consumption, and data storage required for real-time hardware implementation. This work also addresses the challenge of implementing the hardware to execute multiaxial contact-force estimation algorithms from a normal stress tactile sensor array on a field-programmable gate-array development platform, employing a high-level description approach. This paper describes the hardware implementation of the proposed sparse algorithm and that of an algorithm previously reported in the literature, comparing the results of both hardware implementations with the software results already validated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!