Background: Floral timing is a carefully regulated process, in which the plant determines the optimal moment to switch from the vegetative to reproductive phase. While there are numerous genes known that control flowering time, little information is available on chemical compounds that are able to influence this process. We aimed to discover novel compounds that are able to induce flowering in the model plant Arabidopsis. For this purpose we developed a plant-based screening platform that can be used in a chemical genomics study.
Results: Here we describe the set-up of the screening platform and various issues and pitfalls that need to be addressed in order to perform a chemical genomics screening on Arabidopsis plantlets. We describe the choice for a molecular marker, in combination with a sensitive reporter that's active in plants and is sufficiently sensitive for detection. In this particular screen, the firefly Luciferase marker was used, fused to the regulatory sequences of the floral meristem identity gene , which is an early marker for flowering. Using this screening platform almost 9000 compounds were screened, in triplicate, in 96-well plates at a concentration of 25 µM. One of the identified potential flowering inducing compounds was studied in more detail and named Flowering1 (F1). F1 turned out to be an analogue of the plant hormone Salicylic acid (SA) and appeared to be more potent than SA in the induction of flowering. The effect could be confirmed by watering Arabidopsis plants with SA or F1, in which F1 gave a significant reduction in time to flowering in comparison to SA treatment or the control.
Conclusions: In this study a chemical genomics screening platform was developed to discover compounds that can induce flowering in Arabidopsis. This platform was used successfully, to identify a compound that can speed-up flowering in Arabidopsis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627458 | PMC |
http://dx.doi.org/10.1186/s13007-017-0230-2 | DOI Listing |
Reprod Toxicol
December 2024
Department of Genomic Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, Haryana, India, 121102. Electronic address:
Exposure to environmental pollutants during pregnancy can adversely affect fetal growth and postnatal development. While numerous studies have explored the interaction between environmental toxic chemicals and the folate pathway, few have examined their inhibitory effects on key targets. This computational study identified 27 maternal environmental toxicants using the Comparative Toxicogenomics Database (CTD) and analyzed them to identify their targets.
View Article and Find Full Text PDFJ Biol Chem
December 2024
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China. Electronic address:
Mirror-image nucleosides, as potential antiviral drugs, can inhibit virus DNA polymerase to prevent virus replication. Conversely, they may be inserted into the DNA strands during DNA replication or transcription processes, leading to mutations that affect genome stability. Accumulation of significant mutation damage in cells may result in cell aging, apoptosis, and even uncontrolled cell division.
View Article and Find Full Text PDFPoult Sci
December 2024
DTU National Food Institute, Research Group for Foodborne Pathogens and Epidemiology, Henrik Dams Allé, 2800 Kgs. Lyngby, Denmark.
The Campylobacter prevalence in free-ranging broiler flocks is usually higher than in conventional flocks, and effective interventions for this production type are needed. This study aimed to investigate the on-farm Campylobacter-reducing effect of feeding three feed additives or a water additive to broilers from hatching to slaughter. Newly hatched Ranger Gold broilers (n = 140) were randomly placed into five cages (n = 28/cage) within a flock of 6,000 broilers.
View Article and Find Full Text PDFJ Exp Bot
December 2024
Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Acad Sci, Šlechtitelů 31, Olomouc 77900, Czech Republic.
Cytosine (DNA) methylation plays important roles in silencing transposable elements, plant development, genomic imprinting, stress responses, and maintenance of genome stability. To better understand the functions of this epigenetic modification, several tools have been developed to manipulate DNA methylation levels. These include mutants of DNA methylation writers and readers, targeted manipulation of locus-specific methylation, and the use of chemical inhibitors.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
December 2024
Life Sciences and Bioengineering Center, Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
Transcriptomics is a powerful approach for functional genomics and systems biology, yet it can also be used for genetic part discovery. Here, we derive constitutive and light-regulated promoters directly from transcriptomics data of the basidiomycete red yeast Xanthophyllomyces dendrorhous CBS 6938 (anamorph Phaffia rhodozyma) and use these promoters with other genetic elements to create a modular synthetic biology parts collection for this organism. X.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!