Single-quantum emitters are an important resource for photonic quantum technologies, constituting building blocks for single-photon sources, stationary qubits, and deterministic quantum gates. Robust implementation of such functions is achieved through systems that provide both strong light-matter interactions and a low-loss interface between emitters and optical fields. Existing platforms providing such functionality at the single-node level present steep scalability challenges. Here, we develop a heterogeneous photonic integration platform that provides such capabilities in a scalable on-chip implementation, allowing direct integration of GaAs waveguides and cavities containing self-assembled InAs/GaAs quantum dots-a mature class of solid-state quantum emitter-with low-loss SiN waveguides. We demonstrate a highly efficient optical interface between SiN waveguides and single-quantum dots in GaAs geometries, with performance approaching that of devices optimized for each material individually. This includes quantum dot radiative rate enhancement in microcavities, and a path for reaching the non-perturbative strong-coupling regime.Effective use of single emitters in quantum photonics requires coherent emission, strong light-matter coupling, low losses and scalable fabrication. Here, Davanco et al. stride toward this goal by hybrid on-chip integration of Si3N4 waveguides and GaAs nanophotonic geometries with InAs quantum dots.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5715121 | PMC |
http://dx.doi.org/10.1038/s41467-017-00987-6 | DOI Listing |
Environ Sci Technol
January 2025
Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China.
Membrane distillation (MD) efficiently desalinizes and treats high-salinity water as well as addresses the challenges in handling concentrated brines and wastewater. However, silica scaling impeded the effectiveness of MD for treating hypersaline water and wastewater. Herein, the effects of humic acid (HA) on silica scaling behavior during MD are systematically investigated.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.
Green's function theory has emerged as a powerful many-body approach not only in condensed matter physics but also in quantum chemistry in recent years. We have developed a new all-electron implementation of the BSE@GW formalism using numeric atom-centered orbital basis sets (Liu, C. 2020, 152, 044105).
View Article and Find Full Text PDFHeliyon
January 2025
Transmission Electronic Microscopy Laboratory, Electronic Microscopy Unit, Department of Biology, University of Cauca, Popayán, 190002, Colombia.
A green methodology for the synthesis of carbon quantum dots (CQDs) from coffee husk without the use of any toxic solvents is proposed in this work. Sonochemical exfoliation of biochar, obtained from the thermal carbonization of coffee husk (from a certified coffee seeds) at low temperature in an air-restricted atmosphere, is described as an alternative procedure for the sustainable production of CQDs. The synthesized CQDs exhibited blue fluorescence with a strong maximum emission band at 410 nm when excited at a maximum absorption wavelength of 330 nm.
View Article and Find Full Text PDFCommun Math Phys
January 2025
Department of Mathematics, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
We construct a non-chiral conformal field theory (CFT) on the torus that accommodates a second quantization of the elliptic Calogero-Sutherland (eCS) model. We show that the CFT operator that provides this second quantization defines, at the same time, a quantum version of a soliton equation called the non-chiral intermediate long-wave (ncILW) equation. We also show that this CFT operator is a second quantization of a generalized eCS model which can describe arbitrary numbers of four different kinds of particles; we propose that these particles can be identified with solitons of the quantum ncILW equation.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
A highly electron-rich S,N heteroacene building block is developed and condensed with FIC and Cl-IC acceptors to furnish CT-F and CT-Cl, which exhibit near-infrared (NIR) absorption beyond 1000 nm. The C-shaped CT-F and CT-Cl self-assemble into a highly ordered 3D intermolecular packing network via multiple π-π interactions in the single crystal structures. The CT-F-based organic photovoltaic (OPV) achieved an impressive efficiency of 14.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!