The chitinase-like protein YKL-40 mediates airway inflammation and serum levels are associated with asthma severity. However, asthma phenotypes associated with YKL-40 levels have not been precisely defined.We conducted an unsupervised cluster analysis of asthma patients treated at the Yale Center for Asthma and Airways Disease (n=156) to identify subgroups according to YKL-40 level. The resulting YKL-40 clusters were cross-validated in cohorts from the Severe Asthma Research Programme (n=167) and the New York University/Bellevue Asthma Repository (n=341). A sputum transcriptome analysis revealed molecular pathways associated with YKL-40 subgroups.Four YKL-40 clusters (C1-C4) were identified. C3 and C4 had high serum YKL-40 levels compared with C1 and C2. C3 was associated with earlier onset and longer duration of disease, severe airflow obstruction, and near-fatal asthma exacerbations. C4 had the highest serum YKL-40 levels, adult onset and less airflow obstruction, but frequent exacerbations. An airway transcriptome analysis in C3 and C4 showed activation of non-type 2 inflammatory pathways.Elevated serum YKL-40 levels were associated with two distinct clinical asthma phenotypes: one with irreversible airway obstruction and another with severe exacerbations. The YKL-40 clusters are potentially useful for identification of individuals with severe or exacerbation-prone asthma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5967238PMC
http://dx.doi.org/10.1183/13993003.00800-2017DOI Listing

Publication Analysis

Top Keywords

ykl-40 levels
20
ykl-40 clusters
12
serum ykl-40
12
ykl-40
11
asthma
9
levels associated
8
asthma phenotypes
8
associated ykl-40
8
transcriptome analysis
8
airflow obstruction
8

Similar Publications

Background: Oesophageal cancer (EC) is one of the common malignant tumors, and the prognosis of patients is poor. Further exploration of EC pathogenesis remains warranted.

Objective: The relationship between vascular epithelial cadherin (VE-cadherin) and chitinase-3-like protein 1 (CHI3L1) in EC is currently unknown.

View Article and Find Full Text PDF

Background And Objectives: Blood-based biomarkers of amyloid and tau have been shown to predict Alzheimer disease (AD) dementia. Much less is known about their ability to predict risk of mild cognitive impairment (MCI), an earlier disease stage. This study examined whether levels of blood biomarkers of amyloid (Aβ/Aβ ratio), tau (p-tau), neurodegeneration (NfL), and glial activation and neuroinflammation (glial fibrillary acidic protein [GFAP], YKL40, soluble triggering receptor expressed on myeloid cells 2 [sTREM2]) collected when participants were cognitively normal are associated with the time to onset of MCI.

View Article and Find Full Text PDF

Aims: We investigated the association of the inflammatory biomarker YKL-40 with cardiovascular events (CVEs) and mortality in individuals with type 2 diabetes.

Methods: We followed 11,346 individuals recently diagnosed with type 2 diabetes for up to 14 years. Baseline YKL-40 levels (measured in 9,010 individuals) were grouped into percentiles (0-33 %, 34-66 %, 67-90 %, and 91-100 %) and analyzed continuously (per 1 SD log increment), with comparisons to CRP (measured in 9,644 individuals).

View Article and Find Full Text PDF

Background: Glioblastoma (GB) is the stage IV of glioma and mesenchymal GB represents the most common and malignant subtype characterized with elevated expression of a mesenchymal marker YKL-40 and resistance to immune drug therapy. Here, we determined if YKL-40 regulates kynurenine (Kyn) pathway (KP) metabolism that contributes to establishing an immune suppressive microenvironment in GB.

Methods: Tumor cells expressing YKL-40 from GB patients were isolated and activated cellular metabolisms were identified via gene microarray analysis.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (iPSCs) provide powerful cellular models of Alzheimer's disease (AD) and offer many advantages over non-human models, including the potential to reflect variation in individual-specific pathophysiology and clinical symptoms. Previous studies have demonstrated that iPSC-neurons from individuals with Alzheimer's disease (AD) reflect clinical markers, including β-amyloid (Aβ) levels and synaptic vulnerability. However, despite neuronal loss being a key hallmark of AD pathology, many risk genes are predominantly expressed in glia, highlighting them as potential therapeutic targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!