Background: Poor grain plumpness (GP) is one of the main constraints to reaching the yield potential of hybrid rice.
Results: In this study, the GP of 177 rice varieties was investigated in three locations across 2 years. By combining the genotype data of 261 simple sequence repeat (SSR) markers, association mapping was conducted to identify the marker-GP association loci. Among 31 marker-GP association loci detected in two or more environments and determined using general linear model (GLM) analyses, seven association loci were also detected using mixed linear model (MLM) analyses. The seven common loci detected by the two analytical methods were located on chromosomes 2, 3 (2), 7, 8 and 12 (2) and explained 7.24~22.28% of the variance. Of these 7 association loci, five markers linked to GP were newly detected: RM5340 on Chr2, RM5480 and RM148 on Chr3, RM1235 on Chr8, and RM5479 on Chr12.
Conclusions: Five marker-GP association loci were newly detected using both the GLM and MLM analytical methods. Elite allele RM505-170 bp had the highest average phenotypic effect on increasing the GP, and the typical carrier variety was 'Maozitou'. Based on the distribution of the elite alleles among the carrier varieties, the top 10 parental combinations for improving the GP in rice via cross-breeding were predicted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5639755 | PMC |
http://dx.doi.org/10.1186/s12863-017-0559-6 | DOI Listing |
Background And Aims: Since salinity stress may occur across stages of rice (Oryza sativa L.) crop growth, understanding the effects of salinity at reproductive stage is important although it has been much less studied than at seedling stage.
Methods: In this study, lines from the Rice Diversity Panel 1 (RDP1) and the 3000 Rice Genomes (3KRG) were used to screen morphological and physiological traits, map loci controlling salinity tolerance through genome-wide association studies (GWAS), and identify favorable haplotypes associated with reproductive stage salinity tolerance.
Nat Struct Mol Biol
December 2024
Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
Infectious diseases drive wild plant evolution and impact crop yield. Plants, like animals, sense biotic threats through pattern recognition receptors (PRRs). Overly robust immune responses can harm plants; thus, understanding the tuning of defense response mechanisms is crucial for developing pathogen-resistant crops.
View Article and Find Full Text PDFCommun Biol
December 2024
Department of Epidemiology and Biostatistics, School of Public Health, Peking University; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China.
Cardiovascular diseases (CVDs) and cerebrovascular diseases (CeVDs) are closely related vascular diseases, sharing common cardiometabolic risk factors (RFs). Although pleiotropic genetic variants of these two diseases have been reported, their underlying pathological mechanisms are still unclear. Leveraging GWAS summary data and using genetic correlation, pleiotropic variants identification, and colocalization analyses, we identified 11 colocalized loci for CVDs-CeVDs-BP (blood pressure), CVDs-CeVDs-LIP (lipid traits), and CVDs-CeVDs-cIMT (carotid intima-media thickness) triplets.
View Article and Find Full Text PDFSci Rep
December 2024
Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830028, China.
Parkinson's disease (PD) is the second most common age-related neurodegenerative disease after Alzheimer's disease. Despite numerous studies, specific age-related factors remain unidentified. This study employed a multi-omics approach to investigate the link between PD and aging.
View Article and Find Full Text PDFPoult Sci
December 2024
Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Hainan, Haikou 571101, PR China. Electronic address:
In order to provide a low-cost, high efficient, and highly accurate tool for molecular breeding of Jiaji ducks, we constructed a cGPS(Genotyping by Pinpoint Sequencing of captured targets) 20 K liquid-phase microarray using resequencing data from this valuable poultry breed for the first time. The microarray contains 20,327 high-quality snp loci, mainly from the 30 Jiaji duck resequencing samples collected in this study, and some loci were supplemented from the 135 duck resequencing data from KUNMING INSTITUTE OF ZOOLOGY.CAS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!