Segment convolutional neural networks (Seg-CNNs) for classifying relations in clinical notes.

J Am Med Inform Assoc

Department of Preventive Medicine and Medical Social Science, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.

Published: January 2018

We propose Segment Convolutional Neural Networks (Seg-CNNs) for classifying relations from clinical notes. Seg-CNNs use only word-embedding features without manual feature engineering. Unlike typical CNN models, relations between 2 concepts are identified by simultaneously learning separate representations for text segments in a sentence: preceding, concept1, middle, concept2, and succeeding. We evaluate Seg-CNN on the i2b2/VA relation classification challenge dataset. We show that Seg-CNN achieves a state-of-the-art micro-average F-measure of 0.742 for overall evaluation, 0.686 for classifying medical problem-treatment relations, 0.820 for medical problem-test relations, and 0.702 for medical problem-medical problem relations. We demonstrate the benefits of learning segment-level representations. We show that medical domain word embeddings help improve relation classification. Seg-CNNs can be trained quickly for the i2b2/VA dataset on a graphics processing unit (GPU) platform. These results support the use of CNNs computed over segments of text for classifying medical relations, as they show state-of-the-art performance while requiring no manual feature engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6381760PMC
http://dx.doi.org/10.1093/jamia/ocx090DOI Listing

Publication Analysis

Top Keywords

segment convolutional
8
convolutional neural
8
neural networks
8
networks seg-cnns
8
seg-cnns classifying
8
classifying relations
8
relations clinical
8
clinical notes
8
manual feature
8
feature engineering
8

Similar Publications

Gastrointestinal (GI) disease examination presents significant challenges to doctors due to the intricate structure of the human digestive system. Colonoscopy and wireless capsule endoscopy are the most commonly used tools for GI examination. However, the large amount of data generated by these technologies requires the expertise and intervention of doctors for disease identification, making manual analysis a very time-consuming task.

View Article and Find Full Text PDF

CNN is considered an efficient tool in brain image segmentation. However, neonatal brain images require specific methods due to their nature and structural differences from adult brain images. Hence, it is necessary to determine the optimal structure and parameters for these models to achieve the desired results.

View Article and Find Full Text PDF

This paper proposes the use of artificial intelligence techniques, specifically the nnU-Net convolutional neural network, to improve the identification of left ventricular walls in images of myocardial perfusion scintigraphy, with the objective of improving the diagnosis and treatment of coronary artery disease. The methodology included data collection in a clinical environment, followed by data preparation and analysis using the 3D Slicer Platform for manual segmentation, and subsequently, the application of artificial intelligence models for automated segmentation, focusing on the efficiency of identifying the walls of the left ventricular. A total of 83 clinical routine exams were collected, each exam containing 50 slices, which is 4,150 images.

View Article and Find Full Text PDF

The problem at hand is the significant global health challenge posed by children's diseases, where timely and accurate diagnosis is crucial for effective treatment and management. Conventional diagnosis techniques are typical, use tedious processes and generate inaccurate results since they are executed by human beings and cause delays in treatment that can be fatal. Considering these and other shortcomings there exists a need to have more efficient and accurate solutions based on artificial intelligence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!