Neuroblastoma is one of the most commonly diagnosed solid cancers for children, and genetic factors may play a critical role in neuroblastoma development. Previous genome-wide association studies (GWASs) have identified nine genes associated with neuroblastoma susceptibility in Caucasians. To determine whether genetic variations in these genes are also associated with neuroblastoma susceptibility in Southern Chinese children, we genotyped 25 polymorphisms within these genes by the TaqMan method in 256 cases and 531 controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the strength of the associations. We performed a meta-analysis to further evaluate the associations. Furthermore, we calculated the area under the receiver-operating characteristic curves (AUC) to assess which gene/genes may better predict neuroblastoma risk. We confirmed that CASC15 rs6939340 A>G, rs4712653 T>C, rs9295536 C>A, LIN28B rs221634 A>T, and LMO1 rs110419 A>G were associated with significantly altered neuroblastoma susceptibility. We also confirmed that rs6939340 A>G (G versus A: OR=1.30, 95% CI=1.13-1.50) and rs110419 G>A (A versus G: OR=1.37, 95% CI=1.19-1.58) were associated with increased neuroblastoma risk for all subjects. We also found that the combination of polymorphisms in CASC15, LIN28B, and LMO1 may be used to predict neuroblastoma risk (AUC=0.63, 95% CI=0.59-0.67). Overall, we verified five GWAS-identified polymorphisms that were associated with neuroblastoma susceptibility alteration for Southern Chinese population; however, these results need further validation in studies with larger sample sizes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5704095 | PMC |
http://dx.doi.org/10.1016/j.tranon.2017.09.008 | DOI Listing |
Science
January 2025
Spanish National Cancer Research Center (CNIO), Madrid, Spain.
Germline structural variants are a risk factor for pediatric extracranial solid tumors.
View Article and Find Full Text PDFScience
January 2025
Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Pediatric solid tumors are a leading cause of childhood disease mortality. In this work, we examined germline structural variants (SVs) as risk factors for pediatric extracranial solid tumors using germline genome sequencing of 1765 affected children, their 943 unaffected parents, and 6665 adult controls. We discovered a sex-biased association between very large (>1 megabase) germline chromosomal abnormalities and increased risk of solid tumors in male children.
View Article and Find Full Text PDFJ Cancer
January 2025
Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong, China.
Neuroblastoma is the most prevalent extracranial solid tumor among children and exhibits remarkable heterogeneity. The methylation of cytosine to form 5-methylcytosine (m5C) is the primary type of modification found in DNA and RNA. The NOL1/NOP2/sun (NSUN) family, specifically NSUN1, is responsible for the methylation process and has been shown to play a key role in cell differentiation and cancer development.
View Article and Find Full Text PDFEur J Pediatr
December 2024
Department of Pathology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.
Unlabelled: Neuroblastoma, " a malignancy originating from neural crest cells, is most commonly diagnosed in children and adolescents. Polymorphisms within the long noncoding RNA (lncRNA) HOXA distal transcript antisense RNA (HOTTIP) are believed to have the capacity to alter an individual's susceptibility to various cancers. This study aimed to investigate the link between HOTTIP gene polymorphisms and neuroblastoma susceptibility.
View Article and Find Full Text PDFBackground And Aims: The cancer susceptibility () gene family of long noncoding RNAs (lncRNAs) plays an important role in cancer. The aim of this study was to identify genetic variants and haplotype structures of genes associated with cancer risk.
Methods: Genome-wide association studies (GWAS) significant variants ( ≤ 5 × 10) on family genes were identified from the GWAS Catalog-EMBL-EBI, and then cancer-associated variants on genes were extracted.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!