Mucosal-associated invariant T (MAIT) cells express a semi-invariant Vα7.2 T cell receptor (TCR) that recognizes ligands from distinct bacterial and fungal species. In neonates, MAIT cells proliferate coincident with gastrointestinal (GI) bacterial colonization. In contrast, under noninflammatory conditions adult MAIT cells remain quiescent because of acquired regulation of TCR signaling. Effects of inflammation and the altered GI microbiota after allogeneic hematopoietic cell transplantation (HCT) on MAIT cell reconstitution have not been described. We conducted an observational study of MAIT cell reconstitution in myeloablative (n = 41) and nonmyeloablative (n = 66) allogeneic HCT recipients and found that despite a rapid and early increase to a plateau at day 30 after HCT, MAIT cell numbers failed to normalize for at least 1 year. Cord blood transplant recipients and those who received post-HCT cyclophosphamide for graft versus host disease (GVHD) prophylaxis had profoundly impaired MAIT cell reconstitution. Sharing of TCRβ gene sequences between MAIT cells isolated from HCT grafts and blood of recipients after HCT showed early MAIT cell reconstitution was due at least in part to proliferation of MAIT cells transferred in the HCT graft. Inflammatory cytokines were required for TCR-dependent MAIT cell proliferation, suggesting that bacterial Vα7.2 TCR ligands might promote MAIT cell reconstitution after HCT. Robust MAIT cell reconstitution was associated with an increased GI abundance of Blautia spp. MAIT cells suppressed proliferation of conventional T cells consistent with a possible regulatory role. Our data identify modifiable factors impacting MAIT cell reconstitution that could influence the risk of GVHD after HCT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5806215PMC
http://dx.doi.org/10.1016/j.bbmt.2017.10.003DOI Listing

Publication Analysis

Top Keywords

mait cell
36
cell reconstitution
28
mait cells
24
mait
15
cell
12
mucosal-associated invariant
8
cells
8
allogeneic hematopoietic
8
hematopoietic cell
8
cell transplantation
8

Similar Publications

Tissue-resident lymphocytes (TRLs) provide a front-line immunological defense mechanism uniquely placed to detect perturbations in tissue homeostasis. The heterogeneous TRL population spans the innate to adaptive immune continuum, with roles during normal physiology in homeostatic maintenance, tissue repair, pathogen detection, and rapid mounting of immune responses. TRLs are especially enriched in the liver, with every TRL subset represented, including liver-resident natural killer cells; tissue-resident memory B cells; conventional tissue-resident memory CD8, CD4, and regulatory T cells; and unconventional gamma-delta, natural killer, and mucosal-associated invariant T cells.

View Article and Find Full Text PDF

Introduction: Plaques are a hallmark feature of Alzheimer's disease (AD). We found that the loss of mucosal-associated invariant T (MAIT) cells and their antigen-presenting molecule MR1 caused a delay in plaque pathology development in AD mouse models. However, it remains unknown how this axis is impacting dystrophic neurites.

View Article and Find Full Text PDF

MAIT cells modulating the oral lichen planus immune microenvironment: a cellular crosstalk perspective.

Inflamm Res

January 2025

Departments of Oral Medicine, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China.

Mucosal-associated invariant T (MAIT) cells, a type of T lymphocytes with innate-like characteristics, are crucial in bridging innate and adaptive immunity. When activated, MAIT cells release various inflammatory molecules and swiftly respond to antigens. Notably, numerous studies highlight the significant impact of MAIT cells on tumors and various immune disorders by influencing the immune microenvironment.

View Article and Find Full Text PDF

Single-cell atlas of the pregnant equine endometrium before and after implantation.

Biol Reprod

January 2025

Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY 14853.

Embryo implantation in the mare occurs just over one month after fertilization, coinciding with the production of chorionic gonadotropin. The factors that regulate this late implantation in the mare, and whether they are unique to horses or shared with more invasive embryo implantation in other species, remain poorly understood. This study aimed to determine and compare the transcriptome and subpopulations of endometrial cells before and after embryo implantation in the horse.

View Article and Find Full Text PDF

The T cell antigen presentation platform MR1 consists of 6 allomorphs in humans that differ by no more than 5 amino acids. The principal function of this highly conserved molecule involves presenting microbial metabolites to the abundant mucosal-associated invariant T (MAIT) cell subset. Recent developments suggest that the role of MR1 extends to presenting antigens from cancer cells, a function dependent on the K43 residue in the MR1 antigen binding cleft.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!