(Bis)furan-telechelic, low-molar-mass polybutadienes and polyisoprenes are synthesized by controlled degradation of high molar mass polymers and chain-end modifications yielding difunctional, trifunctional, or tetrafunctional polymers. Addition of a bismaleimide to the liquid-modified polymer leads to the formation of a thermoreversible elastomeric network based on the Diels-Alder chemistry for the trifunctional or tetrafunctional polymers, whereas only chain extension occurs for the bifunctional one. Dynamic mechanical analyses or tensile tests are performed on the networks and reveal a similar behavior for polyisoprene and polybutadiene with nevertheless quite different Young modulus or strain at break. The retro Diels-Alder reaction occurs upon heating, allowing the remolding of the used elastomer. The remolded network exhibits the same mechanical properties as the initial network, showing an efficient material recyclability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.201700475 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!