Explaining ecosystem multifunction with evolutionary models.

Ecology

State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou 510275, China.

Published: December 2017

Ecosystem function is the outcome of species interactions, traits, and niche overlap - all of which are influenced by evolution. However, it is not well understood how the tempo and mode of niche evolution can influence ecosystem function. In evolutionary models where either species differences accumulate through random drift in a single trait or species differences accumulate through divergent selection among close relatives, we should expect that ecosystem function is strongly related to diversity. However, when strong selection causes species to converge on specific niches or when novel traits that directly affect function evolve in some clades but not others, the relationship between diversity and ecosystem function might not be very strong. We test these ideas using a field experiment that established plant mixtures with differing phylogenetic diversities and we measured ten different community functions. We show that some functions were strongly predicted by species richness and mean pairwise phylogenetic distance (MPD, a measure of phylogenetic diversity), including biomass production and the reduction of herbivore and pathogen damage in polyculture, while other functions had weaker (litter production and structural complexity) or nonsignificant relationships (e.g., flower production and arthropod abundance) with MPD and richness. However, these divergent results can be explained by different models of niche evolution. These results show that diversity-ecosystem function relationships are the product of evolution, but that the nature of how evolution influences ecosystem function is complex.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ecy.2045DOI Listing

Publication Analysis

Top Keywords

ecosystem function
20
evolutionary models
8
niche evolution
8
species differences
8
differences accumulate
8
function
7
ecosystem
5
species
5
evolution
5
explaining ecosystem
4

Similar Publications

Stay Connected to Be Diverse!

Glob Chang Biol

January 2025

Aquatic Ecology, Department Biology, Ludwig-Maximilians - University Munich, München, Germany.

Plankton biodiversity is crucial for the functioning of aquatic ecosystems, influencing nutrient cycling, food web dynamics, and carbon storage. Global change and habitat destruction disrupt these ecosystems, reducing species diversity and ecosystem resilience. Connectivity between aquatic habitats supports biodiversity by enabling species migration, genetic diversity, and recovery from disturbances.

View Article and Find Full Text PDF

The Disturbed Microbial Niches of Itchy Scalp.

J Cosmet Dermatol

January 2025

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.

Background: Scalp itch without evident cause is an uncomfortable symptom that annoys many people in life but lacks adequate attention in academic.

Aims: To investigate the relationship between scalp itching and microorganisms, and identify the key microbes and predicted functions associated with scalp itching, furtherly to provide useful targets for scalp itch solution.

Methods: We performed microbial comparison between 44 normal subjects and 89 subjects having scalp itching problem with un-identified origin based on 16S rRNA gene sequencing and ddPCR (digital droplet PCR), and identified itch relevant microbes and predicted functions.

View Article and Find Full Text PDF

Soil microbes are among the most abundant and diverse organisms on Earth but remain poorly characterized. New technologies have made possible to sequence the DNA of uncultivated microorganisms in soil and other complex ecosystems. Genome assembly is crucial for understanding their functional potential.

View Article and Find Full Text PDF

Rat models of postintracerebral hemorrhage pneumonia induced by nasal inoculation with or intratracheal inoculation with LPS.

Front Immunol

January 2025

State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Neurology, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.

Background: A stable and reproducible experimental bacterial pneumonia model postintracerebral hemorrhage (ICH) is necessary to help investigating the pathogenesis and novel treatments of Stroke-associated pneumonia (SAP).

Aim: To establish a Gram-negative bacterial pneumonia-complicating ICH rat model and an acute lung injury (ALI)-complicating ICH rat model.

Methods: We established two standardized models of post-ICH pneumonia by nasal inoculation with () or intratracheal inoculation with lipopolysaccharide (LPS).

View Article and Find Full Text PDF

Bariatric surgery is an effective treatment for type 2 Diabetes Mellitus (T2DM), yet the precise mechanisms underlying its effectiveness remain incompletely understood. While previous research has emphasized the role of rearrangement of the gastrointestinal anatomy, gaps persist regarding the specific impact on the gut microbiota and barriers within the biliopancreatic, alimentary, and common limbs. This study aimed to investigate the effects of duodenal-jejunal bypass (DJB) surgery on obese T2DM mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!