Spatial community reassembly driven by changes in species abundances or habitat occupancy is a well-documented response to anthropogenic global change, but communities can also reassemble temporally if the environment drives differential shifts in the timing of life events across community members. Much like spatial community reassembly, temporal reassembly could be particularly important when critical species interactions are temporally concentrated (e.g., plant-pollinator dynamics during flowering). Previous studies have documented species-specific shifts in phenology driven by climate change, implying that temporal reassembly, a process we term "phenological reassembly," is likely. However, few studies have documented changes in the temporal co-occurrence of community members driven by environmental change, likely because few datasets of entire communities exist. We addressed this gap by quantifying the relationship between flowering phenology and climate for 48 co-occurring subalpine wildflower species at Mount Rainier (Washington, USA) in a large network of plots distributed across Mt. Rainier's steep environmental gradients; large spatio-temporal variability in climate over the 6 yr of our study (including the earliest and latest snowmelt year on record) provided robust estimates of climate-phenology relationships for individual species. We used these relationships to examine changes to community co-flowering composition driven by 'climate change analog' conditions experienced at our sites in 2015. We found that both the timing and duration of flowering of focal species was strongly sensitive to multiple climatic factors (snowmelt, temperature, and soil moisture). Some consistent responses emerged, including earlier snowmelt and warmer growing seasons driving flowering phenology earlier for all focal species. However, variation among species in their phenological sensitivities to these climate drivers was large enough that phenological reassembly occurred in the climate change analog conditions of 2015. An unexpected driver of phenological reassembly was fine-scale variation in the direction and magnitude of climatic change, causing phenological reassembly to be most apparent early and late in the season and in topographic locations where snow duration was shortest (i.e., at low elevations and on ridges in the landscape). Because phenological reassembly may have implications for many types of ecological interactions, failing to monitor community-level repercussions of species-specific phenological shifts could underestimate climate change impacts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ecy.1996DOI Listing

Publication Analysis

Top Keywords

phenological reassembly
20
climate change
12
reassembly
9
spatial community
8
community reassembly
8
community members
8
temporal reassembly
8
studies documented
8
flowering phenology
8
focal species
8

Similar Publications

Article Synopsis
  • Changes in flowering times due to climate change have led to longer flowering durations for plant species in central North America, averaging an increase of 11.5 days over the past century.
  • Nearly all species studied (94%) showed greater overlap in their flowering periods, particularly in autumn, where late-season species have extended their blooming periods.
  • This research highlights the significant impact of climate change on plant reproductive patterns, suggesting that the effects are more pronounced in certain seasons, like autumn.
View Article and Find Full Text PDF

● Flowering is a key process in the life cycle of a plant. Climate change is shifting flowering phenologies in the Northern Hemisphere, but studies with long data series at community level are scarce, and even more so those regarding the consequences of phenological changes for emerging ecological interactions. In the Mediterranean region, the effects of climate change are stronger than the global average and there is an urgent need to understand how biodiversity will be affected in this area.

View Article and Find Full Text PDF

Spatial community reassembly driven by changes in species abundances or habitat occupancy is a well-documented response to anthropogenic global change, but communities can also reassemble temporally if the environment drives differential shifts in the timing of life events across community members. Much like spatial community reassembly, temporal reassembly could be particularly important when critical species interactions are temporally concentrated (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!