https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=29023572&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 290235722017102320181113
1932-620312102017PloS onePLoS OneComputer aided detection in prostate cancer diagnostics: A promising alternative to biopsy? A retrospective study from 104 lesions with histological ground truth.e0185995e0185995e018599510.1371/journal.pone.0185995Prostate cancer (PCa) diagnosis by means of multiparametric magnetic resonance imaging (mpMRI) is a current challenge for the development of computer-aided detection (CAD) tools. An innovative CAD-software (Watson Elementary™) was proposed to achieve high sensitivity and specificity, as well as to allege a correlate to Gleason grade.To assess the performance of Watson Elementary™ in automated PCa diagnosis in our hospital´s database of MRI-guided prostate biopsies.The evaluation was retrospective for 104 lesions (47 PCa, 57 benign) from 79, 64.61±6.64 year old patients using 3T T2-weighted imaging, Apparent Diffusion Coefficient (ADC) maps and dynamic contrast enhancement series. Watson Elementary™ utilizes signal intensity, diffusion properties and kinetic profile to compute a proportional Gleason grade predictor, termed Malignancy Attention Index (MAI). The analysis focused on (i) the CAD sensitivity and specificity to classify suspect lesions and (ii) the MAI correlation with the histopathological ground truth.The software revealed a sensitivity of 46.80% for PCa classification. The specificity for PCa was found to be 75.43% with a positive predictive value of 61.11%, a negative predictive value of 63.23% and a false discovery rate of 38.89%. CAD classified PCa and benign lesions with equal probability (P 0.06, χ2 test). Accordingly, receiver operating characteristic analysis suggests a poor predictive value for MAI with an area under curve of 0.65 (P 0.02), which is not superior to the performance of board certified observers. Moreover, MAI revealed no significant correlation with Gleason grade (P 0.60, Pearson´s correlation).The tested CAD software for mpMRI analysis was a weak PCa biomarker in this dataset. Targeted prostate biopsy and histology remains the gold standard for prostate cancer diagnosis.ThonAnikaAInstitute of Diagnostic and Interventional Radiology, Department of Experimental Radiology, Jena University Hospital, Friedrich-Schiller University, Jena, Germany.Institute of Radiology, Suedharz Hospital Nordhausen gGmbH, Nordhausen, Germany.TeichgräberUlfUInstitute of Diagnostic and Interventional Radiology, Department of Experimental Radiology, Jena University Hospital, Friedrich-Schiller University, Jena, Germany.Tennstedt-SchenkCorneliaCInstitute for Pathology, Mühlhausen-Pfafferode, Germany.HadjidemetriouStathisSDepartment of Electrical Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus.WinzlerSvenSInstitute of Radiology, Suedharz Hospital Nordhausen gGmbH, Nordhausen, Germany.MalichAnsgarAInstitute of Radiology, Suedharz Hospital Nordhausen gGmbH, Nordhausen, Germany.PapageorgiouIsminiI0000-0001-5810-0483Institute of Radiology, Suedharz Hospital Nordhausen gGmbH, Nordhausen, Germany.engJournal Article20171012
United StatesPLoS One1012850811932-6203IMAgedAged, 80 and overArea Under CurveDiagnosis, Computer-AssistedmethodsHumansImage Processing, Computer-AssistedmethodsImage-Guided BiopsymethodsMagnetic Resonance ImagingmethodsMaleMiddle AgedProstatic Neoplasmsdiagnostic imagingpathologyRetrospective StudiesSensitivity and SpecificitySoftwareCompeting Interests: The authors have declared that no competing interests exist.
201737201792220171013602017101360201710246020171012epublish29023572PMC563833010.1371/journal.pone.0185995PONE-D-17-09097Cancer of the Prostate—SEER Stat Fact Sheets [Internet]. [cited 19 Oct 2016]. http://seer.cancer.gov/statfacts/html/prost.htmlProstate cancer survival statistics. In: Cancer Research UK [Internet]. 15 May 2015 [cited 19 Oct 2016]. http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/prostate-cancer/survivalFilella X, Foj L. Prostate Cancer Detection and Prognosis: From Prostate Specific Antigen (PSA) to Exosomal Biomarkers. Int J Mol Sci. 2016;17 doi: 10.3390/ijms17111784 10.3390/ijms17111784PMC513378527792187Ilic D, Neuberger MM, Djulbegovic M, Dahm P. Screening for prostate cancer. Cochrane Database Syst Rev. 2013; CD004720 doi: 10.1002/14651858.CD004720.pub3 10.1002/14651858.CD004720.pub3PMC840691523440794Pron G. Prostate-Specific Antigen (PSA)-Based Population Screening for Prostate Cancer: An Evidence-Based Analysis. Ont Health Technol Assess Ser. 2015;15: 1–64.PMC456154926366236Hayes JH, Barry MJ. Screening for prostate cancer with the prostate-specific antigen test: a review of current evidence. JAMA. 2014;311: 1143–1149. doi: 10.1001/jama.2014.2085 10.1001/jama.2014.208524643604Wolf AMD, Wender RC, Etzioni RB, Thompson IM, D’Amico AV, Volk RJ, et al. American Cancer Society Guideline for the Early Detection of Prostate Cancer: Update 2010. CA Cancer J Clin. 2010;60: 70–98. doi: 10.3322/caac.20066 10.3322/caac.2006620200110Mottet N, Bellmunt J, Bolla M, Briers E, Cumberbatch MG, De Santis M, et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur Urol. 2016; doi: 10.1016/j.eururo.2016.08.003 10.1016/j.eururo.2016.08.00327568654Bjurlin MA, Meng X, Le Nobin J, Wysock JS, Lepor H, Rosenkrantz AB, et al. Optimization of prostate biopsy: the role of magnetic resonance imaging targeted biopsy in detection, localization and risk assessment. J Urol. 2014;192: 648–658. doi: 10.1016/j.juro.2014.03.117 10.1016/j.juro.2014.03.117PMC422495824769030Oberlin DT, Casalino DD, Miller FH, Meeks JJ. Dramatic increase in the utilization of multiparametric magnetic resonance imaging for detection and management of prostate cancer. Abdom Radiol N Y. 2016; doi: 10.1007/s00261-016-0975-5 10.1007/s00261-016-0975-527858090Klotz L, Emberton M. Management of low risk prostate cancer-active surveillance and focal therapy. Nat Rev Clin Oncol. 2014;11: 324–334. doi: 10.1038/nrclinonc.2014.73 10.1038/nrclinonc.2014.7324821214Chang AJ, Autio KA, Roach M, Scher HI. High-risk prostate cancer-classification and therapy. Nat Rev Clin Oncol. 2014;11: 308–323. doi: 10.1038/nrclinonc.2014.68 10.1038/nrclinonc.2014.68PMC450885424840073Wang S, Burtt K, Turkbey B, Choyke P, Summers RM. Computer Aided-Diagnosis of Prostate Cancer on Multiparametric MRI: A Technical Review of Current Research. BioMed Res Int. 2014;2014: e789561 doi: 10.1155/2014/789561 10.1155/2014/789561PMC426700225525604Schiebler ML, Schnall MD, Pollack HM, Lenkinski RE, Tomaszewski JE, Wein AJ, et al. Current role of MR imaging in the staging of adenocarcinoma of the prostate. Radiology. 1993;189: 339–352. doi: 10.1148/radiology.189.2.8210358 10.1148/radiology.189.2.82103588210358Hamoen EHJ, de Rooij M, Witjes JA, Barentsz JO, Rovers MM. Use of the Prostate Imaging Reporting and Data System (PI-RADS) for Prostate Cancer Detection with Multiparametric Magnetic Resonance Imaging: A Diagnostic Meta-analysis. Eur Urol. 2015;67: 1112–1121. doi: 10.1016/j.eururo.2014.10.033 10.1016/j.eururo.2014.10.03325466942Kayat Bittencourt L, Litjens G, Hulsbergen-van de Kaa CA, Turkbey B, Gasparetto EL, Barentsz JO. Prostate Cancer: The European Society of Urogenital Radiology Prostate Imaging Reporting and Data System Criteria for Predicting Extraprostatic Extension by Using 3-T Multiparametric MR Imaging. Radiology. 2015;276: 479–489. doi: 10.1148/radiol.15141412 10.1148/radiol.1514141225848900Barentsz JO, Richenberg J, Clements R, Choyke P, Verma S, Villeirs G, et al. ESUR prostate MR guidelines 2012. Eur Radiol. 2012;22: 746–757. doi: 10.1007/s00330-011-2377-y 10.1007/s00330-011-2377-yPMC329775022322308Haider MA, Chung P, Sweet J, Toi A, Jhaveri K, Ménard C, et al. Dynamic contrast-enhanced magnetic resonance imaging for localization of recurrent prostate cancer after external beam radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70: 425–430. doi: 10.1016/j.ijrobp.2007.06.029 10.1016/j.ijrobp.2007.06.02917881141Kozlowski P, Chang SD, Jones EC, Berean KW, Chen H, Goldenberg SL. Combined diffusion-weighted and dynamic contrast-enhanced MRI for prostate cancer diagnosis—correlation with biopsy and histopathology. J Magn Reson Imaging JMRI. 2006;24: 108–113. doi: 10.1002/jmri.20626 10.1002/jmri.2062616767709Kirkham APS, Emberton M, Allen C. How good is MRI at detecting and characterising cancer within the prostate? Eur Urol. 2006;50: 1163–1174; discussion 1175. doi: 10.1016/j.eururo.2006.06.025 10.1016/j.eururo.2006.06.02516842903Speight JL, Roach M. Advances in the treatment of localized prostate cancer: the role of anatomic and functional imaging in men managed with radiotherapy. J Clin Oncol Off J Am Soc Clin Oncol. 2007;25: 987–995. doi: 10.1200/JCO.2006.10.3218 10.1200/JCO.2006.10.321817350948Tsivian M, Gupta RT, Tsivian E, Qi P, Mendez MH, Abern MR, et al. Assessing clinically significant prostate cancer: Diagnostic properties of multiparametric magnetic resonance imaging compared to three-dimensional transperineal template mapping histopathology. Int J Urol Off J Jpn Urol Assoc. 2016; doi: 10.1111/iju.13251 10.1111/iju.1325127859637Roethke MC, Kuru TH, Mueller-Wolf MB, Agterhuis E, Edler C, Hohenfellner M, et al. Evaluation of an Automated Analysis Tool for Prostate Cancer Prediction Using Multiparametric Magnetic Resonance Imaging. PloS One. 2016;11: e0159803 doi: 10.1371/journal.pone.0159803 10.1371/journal.pone.0159803PMC495971627454770Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging JMRI. 1999;10: 223–232.10508281Parker GJ, Tofts PS. Pharmacokinetic analysis of neoplasms using contrast-enhanced dynamic magnetic resonance imaging. Top Magn Reson Imaging TMRI. 1999;10: 130–142.10551628Litjens G, Debats O, Barentsz J, Karssemeijer N, Huisman H. Computer-aided detection of prostate cancer in MRI. IEEE Trans Med Imaging. 2014;33: 1083–1092. doi: 10.1109/TMI.2014.2303821 10.1109/TMI.2014.230382124770913Hambrock T, Somford DM, Huisman HJ, van Oort IM, Witjes JA, Hulsbergen-van de Kaa CA, et al. Relationship between apparent diffusion coefficients at 3.0-T MR imaging and Gleason grade in peripheral zone prostate cancer. Radiology. 2011;259: 453–461. doi: 10.1148/radiol.11091409 10.1148/radiol.1109140921502392Vos EK, Kobus T, Litjens GJS, Hambrock T, Hulsbergen-van de Kaa CA, Barentsz JO, et al. Multiparametric Magnetic Resonance Imaging for Discriminating Low-Grade From High-Grade Prostate Cancer. Invest Radiol. 2015;50: 490–497. doi: 10.1097/RLI.0000000000000157 10.1097/RLI.000000000000015725867656Turkbey B, Shah VP, Pang Y, Bernardo M, Xu S, Kruecker J, et al. Is apparent diffusion coefficient associated with clinical risk scores for prostate cancers that are visible on 3-T MR images? Radiology. 2011;258: 488–495. doi: 10.1148/radiol.10100667 10.1148/radiol.10100667PMC302988721177390Zelhof B, Pickles M, Liney G, Gibbs P, Rodrigues G, Kraus S, et al. Correlation of diffusion-weighted magnetic resonance data with cellularity in prostate cancer. BJU Int. 2009;103: 883–888. doi: 10.1111/j.1464-410X.2008.08130.x 10.1111/j.1464-410X.2008.08130.x19007373Gibbs P, Liney GP, Pickles MD, Zelhof B, Rodrigues G, Turnbull LW. Correlation of ADC and T2 measurements with cell density in prostate cancer at 3.0 Tesla. Invest Radiol. 2009;44: 572–576. doi: 10.1097/RLI.0b013e3181b4c10e 10.1097/RLI.0b013e3181b4c10e19692841Hegde JV, Mulkern RV, Panych LP, Fennessy FM, Fedorov A, Maier SE, et al. Multiparametric MRI of Prostate Cancer: An Update on State-of-the-Art Techniques and Their Performance in Detecting and Localizing Prostate Cancer. J Magn Reson Imaging JMRI. 2013;37: 1035–1054. doi: 10.1002/jmri.23860 10.1002/jmri.23860PMC374199623606141Shah V, Turkbey B, Mani H, Pang Y, Pohida T, Merino MJ, et al. Decision support system for localizing prostate cancer based on multiparametric magnetic resonance imaging. Med Phys. 2012;39: 4093–4103. doi: 10.1118/1.4722753 10.1118/1.4722753PMC339004822830742Peng Y, Jiang Y, Yang C, Brown JB, Antic T, Sethi I, et al. Quantitative analysis of multiparametric prostate MR images: differentiation between prostate cancer and normal tissue and correlation with Gleason score—a computer-aided diagnosis development study. Radiology. 2013;267: 787–796. doi: 10.1148/radiol.13121454 10.1148/radiol.13121454PMC694000823392430Moradi M, Salcudean SE, Chang SD, Jones EC, Buchan N, Casey RG, et al. Multiparametric MRI maps for detection and grading of dominant prostate tumors. J Magn Reson Imaging JMRI. 2012;35: 1403–1413. doi: 10.1002/jmri.23540 10.1002/jmri.23540PMC547837722267089Mahapatra D, Buhmann JM. Prostate MRI segmentation using learned semantic knowledge and graph cuts. IEEE Trans Biomed Eng. 2014;61: 756–764. doi: 10.1109/TBME.2013.2289306 10.1109/TBME.2013.228930624235297Kim TH, Jeong JY, Lee SW, Kim CK, Park BK, Sung HH, et al. Diffusion-weighted magnetic resonance imaging for prediction of insignificant prostate cancer in potential candidates for active surveillance. Eur Radiol. 2015;25: 1786–1792. doi: 10.1007/s00330-014-3566-2 10.1007/s00330-014-3566-225636416Koo JH, Kim CK, Choi D, Park BK, Kwon GY, Kim B. Diffusion-weighted magnetic resonance imaging for the evaluation of prostate cancer: optimal B value at 3T. Korean J Radiol. 2013;14: 61–69. doi: 10.3348/kjr.2013.14.1.61 10.3348/kjr.2013.14.1.61PMC354230423323032Kim CK, Park BK, Kim B. High-b-value diffusion-weighted imaging at 3 T to detect prostate cancer: comparisons between b values of 1,000 and 2,000 s/mm2. AJR Am J Roentgenol. 2010;194: W33–37. doi: 10.2214/AJR.09.3004 10.2214/AJR.09.300420028888Metens T, Miranda D, Absil J, Matos C. What is the optimal b value in diffusion-weighted MR imaging to depict prostate cancer at 3T? Eur Radiol. 2012;22: 703–709. doi: 10.1007/s00330-011-2298-9 10.1007/s00330-011-2298-921971824Roethke MC, Kuru TH, Schultze S, Tichy D, Kopp-Schneider A, Fenchel M, et al. Evaluation of the ESUR PI-RADS scoring system for multiparametric MRI of the prostate with targeted MR/TRUS fusion-guided biopsy at 3.0 Tesla. Eur Radiol. 2014;24: 344–352. doi: 10.1007/s00330-013-3017-5 10.1007/s00330-013-3017-524196383Harnden P, Naylor B, Shelley MD, Clements H, Coles B, Mason MD. The clinical management of patients with a small volume of prostatic cancer on biopsy: what are the risks of progression? A systematic review and meta-analysis. Cancer. 2008;112: 971–981. doi: 10.1002/cncr.23277 10.1002/cncr.2327718186496Gottipati S, Warncke J, Vollmer R, Humphrey PA. Usual and unusual histologic patterns of high Gleason score 8 to 10 adenocarcinoma of the prostate in needle biopsy tissue. Am J Surg Pathol. 2012;36: 900–907. doi: 10.1097/PAS.0b013e3182495dee 10.1097/PAS.0b013e3182495dee22367295Sadimin ET, Khani F, Diolombi M, Meliti A, Epstein JI. Interobserver Reproducibility of Percent Gleason Pattern 4 in Prostatic Adenocarcinoma on Prostate Biopsies. Am J Surg Pathol. 2016;40: 1686–1692. doi: 10.1097/PAS.0000000000000714 10.1097/PAS.000000000000071427487740El-Shater Bosaily A, Valerio M, Hu Y, Freeman A, Jameson C, Brown L, et al. The concordance between the volume hotspot and the grade hotspot: a 3-D reconstructive model using the pathology outputs from the PROMIS trial. Prostate Cancer Prostatic Dis. 2016;19: 258–263. doi: 10.1038/pcan.2016.7 10.1038/pcan.2016.7PMC541167127401032Winters BR, Wright JL, Holt SK, Lin DW, Ellis WJ, Dalkin BL, et al. Extreme Gleason Upgrading From Biopsy to Radical Prostatectomy: A Population-based Analysis. Urology. 2016;96: 148–155. doi: 10.1016/j.urology.2016.04.058 10.1016/j.urology.2016.04.05827313123Zar JH. Biostatistical Analysis. 5 edition Upper Saddle River, New Jersey, USA: Pearson; 2010.Rabah DM, Arafa MA. Prostate cancer screening in a Saudi population: an explanatory trial study. Prostate Cancer Prostatic Dis. 2010;13: 191–194. doi: 10.1038/pcan.2009.60 10.1038/pcan.2009.6020066007Hugosson J, Aus G, Bergdahl S, Fernlund P, Frösing R, Lodding P, et al. Population-based screening for prostate cancer by measuring free and total serum prostate-specific antigen in Sweden. BJU Int. 2003;92 Suppl 2: 39–43.14983953Kasel-Seibert M, Lehmann T, Aschenbach R, Guettler FV, Abubrig M, Grimm M-O, et al. Assessment of PI-RADS v2 for the Detection of Prostate Cancer. Eur J Radiol. 2016;85: 726–731. doi: 10.1016/j.ejrad.2016.01.011 10.1016/j.ejrad.2016.01.01126971415Giannini V, Mazzetti S, Armando E, Carabalona S, Russo F, Giacobbe A, et al. Multiparametric magnetic resonance imaging of the prostate with computer-aided detection: experienced observer performance study. Eur Radiol. 2017; doi: 10.1007/s00330-017-4805-0 10.1007/s00330-017-4805-028386721Litjens GJS, Barentsz JO, Karssemeijer N, Huisman HJ. Clinical evaluation of a computer-aided diagnosis system for determining cancer aggressiveness in prostate MRI. Eur Radiol. 2015;25: 3187–3199. doi: 10.1007/s00330-015-3743-y 10.1007/s00330-015-3743-yPMC459554126060063