A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Designing cellulosic and nanocellulosic sensors for interface with a protease sequestrant wound-dressing prototype: Implications of material selection for dressing and protease sensor design. | LitMetric

AI Article Synopsis

  • * The biosensors utilize nanocellulose materials immobilized with specific fluorescent peptides that target human neutrophil elastase, an enzyme found in chronic wound fluid, enhancing detection sensitivity.
  • * Findings indicate that the properties of the nanomaterials, such as surface area and charge, significantly influence their ability to interact with and sequester the targeted proteases, potentially improving wound care technology.

Article Abstract

Interfacing nanocellulosic-based biosensors with chronic wound dressings for protease point of care diagnostics combines functional material properties of high specific surface area, appropriate surface charge, and hydrophilicity with biocompatibility to the wound environment. Combining a protease sensor with a dressing is consistent with the concept of an intelligent dressing, which has been a goal of wound-dressing design for more than a quarter century. We present here biosensors with a nanocellulosic transducer surface (nanocrystals, nanocellulose composites, and nanocellulosic aerogels) immobilized with a fluorescent elastase tripeptide or tetrapeptide biomolecule, which has selectivity and affinity for human neutrophil elastase present in chronic wound fluid. The specific surface area of the materials correlates with a greater loading of the elastase peptide substrate. Nitrogen adsorption and mercury intrusion studies revealed gas permeable systems with different porosities (28-98%) and pore sizes (2-50 nm, 210 µm) respectively, which influence water vapor transmission rates. A correlation between zeta potential values and the degree of protease sequestration imply that the greater the negative surface charge of the nanomaterials, the greater the sequestration of positively charged neutrophil proteases. The biosensors gave detection sensitivities of 0.015-0.13 units/ml, which are at detectable human neutrophil elastase levels present in chronic wound fluid. Thus, the physical and interactive biochemical properties of the nano-based biosensors are suitable for interfacing with protease sequestrant prototype wound dressings. A discussion of the relevance of protease sensors and cellulose nanomaterials to current chronic wound dressing design and technology is included.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0885328217735049DOI Listing

Publication Analysis

Top Keywords

chronic wound
16
protease sequestrant
8
protease sensor
8
wound dressings
8
specific surface
8
surface area
8
surface charge
8
human neutrophil
8
neutrophil elastase
8
wound fluid
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!