The 8-17 deoxyribozyme (DNAzyme) is a catalytic DNA molecule capable of cleaving specific RNA substrates. The deoxyribozyme is activated by a wide variety of divalent metal ions, from Mg to Pb, with just a few exceptions. It is not clear if metal ions are directly involved in catalysis, or are required to attain an active conformation, or both. In particular, the connection between metal-induced global structural rearrangements and catalysis is not straightforward. To gain more information on the local structural changes induced by metal ions, we introduced fluorescent 2-aminopurine (2-Ap) residues at different positions of the 8-17 'core'. We found that a construct containing 2-Ap at position 15 was best suited to monitor conformational changes in the presence of Mg, Ca or Mn. Binding of these activating metal ions caused a local rearrangement at position 15, apparently entailing decreased stacking of the 2-Ap base. The metal dependence for such conformational change was generally hyperbolic (suggesting it mirrored the binding by a single metal ion) and yielded apparent dissociation constants close to those required for activation. In contrast, Cu, a divalent metal ion which does not support catalysis, caused in the deoxyribozyme a slow, reversible inactivation, which correlated with a very distinct conformational change at position 15.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7ob02001e | DOI Listing |
Sci Rep
January 2025
Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Chuo-ku, Kobe, 650-0047, Hyogo, Japan.
Environmental pollution caused by heavy metals are problems worldwide. In particular, pollution and poisoning by lead ions (Pb) continue to be common and serious problems. Hence, there is a need for a widely usable method to easily detect Pb from solutions containing organic materials from environmental water such as seas, ponds, etc.
View Article and Find Full Text PDFNat Commun
January 2025
School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China.
The high performance of two-dimensional (2D) channel membranes is generally achieved by preparing ultrathin or forming short channels with less tortuous transport through self-assembly of small flakes, demonstrating potential for highly efficient water desalination and purification, gas and ion separation, and organic solvent waste treatment. Here, we report the construction of vertical channels in graphene oxide (GO) membrane based on a substrate template with asymmetric pores. The membranes achieved water permeance of 2647 L m h bar while still maintaining an ultrahigh rejection rate of 99.
View Article and Find Full Text PDFNat Commun
January 2025
School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
Designing efficient Ruthenium-based catalysts as practical anodes is of critical importance in proton exchange membrane water electrolysis. Here, we develop a self-assembly technique to synthesize 1 nm-thick rutile-structured high-entropy oxides (RuIrFeCoCrO) from naked metal ions assembly and oxidation at air-molten salt interface. The RuIrFeCoCrO requires an overpotential of 185 mV at 10 m A cm and maintains the high activity for over 1000 h in an acidic electrolyte via the adsorption evolution mechanism.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu, Lanzhou, 730000, China. Electronic address:
The presence of lead ion (Pb) in groundwater poses a serious risk to human health, even at low levels. Therefore, it is essential to develop a new strategy for both selective detection and effective removal of Pb in groundwater, which has been rarely reported. Here, we developed a multi-functional chitosan-based fluorescent sensing membrane (CM-L/CG) by using a casting method for the sensitive/selective detection and removal of Pb in groundwater.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China. Electronic address:
Cellulose composites have exceptional qualities, particularly in removing heavy metal ions. Nevertheless, these materials' poor mechanical qualities and the restricted exposure of surface-active sites reduce the effectiveness of their removal. The removal efficiency of adsorbent materials largely depends on their macroscopic structural characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!