Heat is fundamental to power generation and many industrial processes, and is most useful at high temperatures because it can be converted more efficiently to other types of energy. However, efficient transportation, storage and conversion of heat at extreme temperatures (more than about 1,300 kelvin) is impractical for many applications. Liquid metals can be very effective media for transferring heat at high temperatures, but liquid-metal pumping has been limited by the corrosion of metal infrastructures. Here we demonstrate a ceramic, mechanical pump that can be used to continuously circulate liquid tin at temperatures of around 1,473-1,673 kelvin. Our approach to liquid-metal pumping is enabled by the use of ceramics for the mechanical and sealing components, but owing to the brittle nature of ceramics their use requires careful engineering. Our set-up enables effective heat transfer using a liquid at previously unattainable temperatures, and could be used for thermal storage and transport, electric power production, and chemical or materials processing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature24054 | DOI Listing |
Inorg Chem
January 2025
State Key Laboratory of Superhard Materials and Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China.
Superconducting hydrides exhibiting a high critical temperature () under extreme pressures have garnered significant interest. However, the extremely high pressures required for their stability have limited their practical applications. The current challenge is to identify high- superconducting hydrides that can be stabilized at lower or even ambient pressures.
View Article and Find Full Text PDFBMC Public Health
January 2025
Social Environment and Health Program, Institute for Social Research, University of Michigan, 426 Thompson St., Ann Arbor, MI, 48104, USA.
Introduction: Levels of plant-based aeroallergens are rising as growing seasons lengthen and intensify with anthropogenic climate change. Increased exposure to pollens could increase risk for mortality from respiratory causes, particularly among older adults. We determined short-term, lag associations of four species classes of pollen (ragweed, deciduous trees, grass pollen and evergreen trees) with respiratory mortality (all cause, chronic and infectious related) in Michigan, USA.
View Article and Find Full Text PDFSmall Methods
January 2025
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543, Republic of Korea.
The conventional carbonization process for synthesizing hard carbons (HCs) requires high-temperature furnace operations exceeding 1000 °C, leading to excessive energy consumption and lengthy processing times, which necessitates the exploration of more efficient synthesis methods. This study demonstrates the rapid preparation of HC anodes using intense pulsed light (IPL)-assisted photothermal carbonization without the prolonged and complex operations typical of traditional carbonization methods. A composite film of microcrystalline cellulose (MCC) and single-walled carbon nanotubes (SWCNTs) is carbonized at high temperatures in less than 1 min.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society, Kolhapur, Maharashtra, India.
A straightforward one-step hydrothermal method is introduced for synthesizing highly efficient red fluorescence carbon dots (R-CQDs), utilizing Heena leaf (Lawsonia inermis) powder as the carbon precursor. The resulting R-CQDs exhibit excitation at 540 nm and emission at 675 nm, a high absolute photoluminescence (PL) with quantum yield of 40% in ethanol. Various physicochemical characterization was employed to confirm successful formation of R-CQDs including UV-Vis Spectroscopy, Fourier Transform Infrared (FT-IR) Spectroscopy, X-ray diffraction Spectroscopy, Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
January 2025
Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
The emergence of multidrug-resistant pathogens presents a significant global health challenge, which is primarily fuelled by overuse and misuse of antibiotics. Bacteria-derived antimicrobial metabolites offer a promising alternative strategy for combating antimicrobial resistance issues. Bacillus velezensis PD9 (BvPD9), isolated from stingless bee propolis, has been reported to have antibacterial activities against methicillin-resistant Staphylococcus aureus (MRSA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!