Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cardiac beneficial effects of chronic exercise is well admitted. These effects mainly studied at the organ and organism integrated levels find their origin in cardiomyocyte adaptation. This chapter try to highlight the main trends of the data related to the different parameters subject to such adaptations. This is addressed through cardiomyocytes size and structure, calcium and contractile properties, and finally electrophysiological alterations induced by training as they transpire from the literature. Despite the clarifications needed to decipher healthy cardiomyocyte remodeling, this overview clearly show that cardiac cell plasticity ensure the cardiac adaptation to exercise training and offers an interesting mean of action to counteract physiological disturbances induced by cardiac pathologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-981-10-4307-9_5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!