Implant strategy affects scaffold stability and integrity in cartilage treatment.

Knee Surg Sports Traumatol Arthrosc

Nano-Biotechnology Laboratory, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, Italy.

Published: September 2018

Purpose: To identify the most appropriate implantation strategy for a novel chondral scaffold in a model simulating the early post-operative phase, in order to optimize the implant procedure and reduce the risk of early failure.

Methods: Eight human cadaveric limbs were strapped to a continuous passive motion device and exposed to extension-flexion cycles (0°-90°). Chondral lesions (1.8 cm diameter) were prepared on condyles, patella and trochlea for the implant of a bi-layer collagen-hydroxyapatite scaffold. The first set-up compared four fixation techniques: press-fit (PF) vs. fibrin glue (FG) vs. pins vs. sutures; the second compared circular and square implants; the third investigated stability in a weight-bearing simulation. The scaffolds were evaluated using semi-quantitative Drobnic and modified Bekkers scores.

Results: FG presented higher total Drobnic and Bekkers scores compared to PF (both p = 0.002), pins (p = 0.013 and 0.001) and sutures (p = 0.001 and < 0.0005). Pins offered better total Drobnic and Bekkers scores than PF in the anterior femoral condyles (p = 0.007 and 0.065), similar to FG. The comparison of round and square implants applied by FG showed worst results for square lesions (Drobnic score p = 0.049, Bekkers score p = 0.037). Finally, load caused worst overall results (Drobnic p = 0.018).

Conclusions: FG improves the fixation of this collagen-HA scaffold regardless of lesion location, improving implant stability while preserving its integrity. Pins represent a suitable option only for lesions of the anterior condyles. Square scaffolds present weak corners, therefore, round implants should be preferred. Finally, partial weight-bearing simulation significantly affected the scaffold. These findings may be useful to improve surgical technique and post-operative management of patients, to optimize the outcome of chondral scaffold implantation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00167-017-4737-xDOI Listing

Publication Analysis

Top Keywords

implant strategy
4
strategy scaffold
4
scaffold stability
4
stability integrity
4
integrity cartilage
4
cartilage treatment
4
treatment purpose
4
purpose identify
4
identify appropriate
4
appropriate implantation
4

Similar Publications

Background: Thoracic aortic endovascular repair (TEVAR) is the most commonly employed method for treating type B aortic dissection (TBAD). One of the primary challenges in TEVAR is the reconstruction of the left subclavian artery (LSA). Various revascularization strategies have been utilized, including branch stent techniques, fenestration techniques, chimney techniques, and hybrid techniques.

View Article and Find Full Text PDF

Karnofsky Performance Status (KPS) is a widely used scale to assess performance status. KPS ≥ 50% implies that patients can live at home. Therefore, maintaining KPS ≥ 50% is important to improve the quality of life of patients with glioblastoma, whose median survival is less than 2 years.

View Article and Find Full Text PDF

Background: Surgical techniques for biceps tenodesis vary in approach, fixation strategy, and anatomic location without clear superior technique for this common procedure.

Hypothesis/purpose: The purpose of this study was to prospectively evaluate a randomized cohort of patients undergoing arthroscopic suprapectoral (ASBT) with interference screw fixation using an inlay technique versus mini-open subpectoral (MOBT) with a unicortical button implant using an onlay technique with regards to 1) clinical outcome measures and 2) structural healing as evaluated by ultrasound.

Methods: From May 2017 to April 2021, patients undergoing biceps tenodesis were preoperatively randomized to either ASBT or MOBT.

View Article and Find Full Text PDF

Malignant biliary obstruction presents a significant therapeutic challenge and has serious consequences including cholangitis and death. Clinically, biliary stenting using self-expanding metallic- stent(SEMS) relieves this obstruction. However, stent occlusion occurs with time due to tumor/epithelial in-growth and bacterial colonization.

View Article and Find Full Text PDF

3D Printed Biomimetic Bilayer Limbal Implants for regeneration of the Corneal Structure in Limbal Stem Cell Deficiency.

Acta Biomater

January 2025

Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China. Electronic address:

Limbal stem cell deficiency (LSCD) causes vision loss and is often treated by simple corneal epithelial cell transplantation with poor long-term efficiency. Here, we present a biomimetic bilayer limbal implant using digital light processing 3D printing technology with gelatin methacrylate (GelMA) and poly (ethylene glycol) diacrylate (PEGDA) bioinks containing corneal epithelial cells (CECs) and corneal stromal stem cells (CSSCs), which can transplant CECs and improve the limbal niche simultaneously. The GelMA/PEGDA hydrogel possessed robust mechanical properties to support surgical transplantation and had good transparency, suitable swelling and degradation rate as a corneal implant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!