Process models that focus on explicitly representing biological mechanisms are increasingly important in disease ecology and animal health research. However, the large number of process modelling approaches makes it difficult to decide which is most appropriate for a given disease system and research question. Here, we discuss different motivations for using process models and present an integrated conceptual analysis that can be used to guide the construction of infectious disease process models and comparisons between them. Our presentation complements existing work by clarifying the major differences between modelling approaches and their relationship with the biological characteristics of the epidemiological system. We first discuss distinct motivations for using process models in epidemiological research, identifying the key steps in model design and use associated with each. We then present a conceptual framework for guiding model construction and comparison, organised according to key aspects of epidemiological systems. Specifically, we discuss the number and type of disease states, whether to focus on individual hosts (e.g., cows) or groups of hosts (e.g., herds or farms), how space or host connectivity affect disease transmission, whether demographic and epidemiological processes are periodic or can occur at any time, and the extent to which stochasticity is important. We use foot-and-mouth disease and bovine tuberculosis in cattle to illustrate our discussion and support explanations of cases in which different models are used to address similar problems. The framework should help those constructing models to structure their approach to modelling decisions and facilitate comparisons between models in the literature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5623672 | PMC |
http://dx.doi.org/10.3389/fvets.2017.00155 | DOI Listing |
Sci Rep
December 2024
School of Electrical Engineering, Vellore Institute of Technology, Chennai, 600127, India.
Spherical tanks have been predominantly used in process industries due to their large storage capability. The fundamental challenges in process industries require a very efficient controller to control the various process parameters owing to their nonlinear behavior. The current research work in this paper aims to propose the Approximate Generalized Time Moments (AGTM) optimization technique for designing Fractional-Order PI (FOPI) and Fractional-Order PID (FOPID) controllers for the nonlinear Single Spherical Tank Liquid Level System (SSTLLS).
View Article and Find Full Text PDFSci Rep
December 2024
College of Mining Engineering, Guizhou University of Engineering Science, Bijie, 551700, China.
The Laurani high-sulfidation epithermal deposit, located in the northeastern Altiplano of Bolivia, is a representative gold-polymetallic deposit linked to the late Miocene volcanic rocks that were formed approximately at about 7.5 Ma. At Laurani, four mineralization stages are defined.
View Article and Find Full Text PDFSci Rep
December 2024
Shandong University of Science and Technology, College of Transportation, Qingdao, 266590, China.
The optimization of auto parts supply chain logistics plays a decisive role in the development of the automotive industry. To reduce logistics costs and improve transportation efficiency, this paper addresses the joint optimization problem of multi-vehicle pickup and delivery transportation paths under time window constraints, coupled with the three-dimensional loading of goods. The model considers mixed time windows, three-dimensional loading constraints, cyclic pickup and delivery paths, varying vehicle loads and volumes, flow balance, and time window constraints.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada.
Accurate diagnosis of oral lesions, early indicators of oral cancer, is a complex clinical challenge. Recent advances in deep learning have demonstrated potential in supporting clinical decisions. This paper introduces a deep learning model for classifying oral lesions, focusing on accuracy, interpretability, and reducing dataset bias.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Dermatology, Niazi Hospital, Lahore, Pakistan.
With breakthroughs in Natural Language Processing and Artificial Intelligence (AI), the usage of Large Language Models (LLMs) in academic research has increased tremendously. Models such as Generative Pre-trained Transformer (GPT) are used by researchers in literature review, abstract screening, and manuscript drafting. However, these models also present the attendant challenge of providing ethically questionable scientific information.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!