Changes in mitochondrial DNA (mtDNA) content is a useful clinical biomarker for various diseases, however results are controversial as several analytical factors can affect measurement of mtDNA. MtDNA is often quantified by taking ratio between a target mitochondrial gene and a reference nuclear gene (mtDNA/nDNA) using quantitative real time PCR often on two separate experiments. It measures relative levels by using external calibrator which may not be comparable across laboratories. We have developed and optimized a droplet digital PCR (ddPCR) based method for quantification of absolute copy number of both mtDNA and nDNA gene in whole blood. Finally, the role of mtDNA in suspected cancer patients referred to a cancer diagnostic center was investigated. Analytical factors which can result in false quantification of mtDNA have been optimized and both target and reference have been quantified simultaneously with intra- and inter-assay coefficient variances as 3.1% and 4.2% respectively. Quantification of mtDNA show that compared to controls, solid tumors (but not hematologic malignancies) and other diseases had significantly lower copy number of mtDNA. Higher mtDNA (highest quartile) was associated with a significantly lower risk of both solid tumors and other diseases, independent of age and sex. Receiver operating curve demonstrated that mtDNA levels could differentiate controls from patients with solid tumors and other diseases. Quantification of mtDNA by a well optimized ddPCR method showed that its depletion may be a hallmark of general illness and can be used to stratify healthy individuals from patients diagnosed with cancer and other chronic diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5634817PMC
http://dx.doi.org/10.1016/j.bdq.2017.08.001DOI Listing

Publication Analysis

Top Keywords

copy number
12
quantification mtdna
12
solid tumors
12
mtdna
11
mitochondrial dna
8
suspected cancer
8
cancer patients
8
well optimized
8
optimized ddpcr
8
ddpcr method
8

Similar Publications

Modular Metabolic Engineering of for Enhanced Production of Ursolic Acid.

J Agric Food Chem

January 2025

State Key Laboratory of Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China.

Ursolic acid, a plant-derived pentacyclic triterpenoid with anti-inflammatory, antioxidant, and other bioactive properties, holds significant potential for use in nutritional supplements and drug development. However, its extraction from medicinal plants is inefficient due to low yield and dependence on seasonality and geography. Herein, we use modular metabolic engineering to enhance ursolic acid production in by dividing the biosynthetic pathway into five modules.

View Article and Find Full Text PDF

Multi-omics sequencing of gastroesophageal junction adenocarcinoma reveals prognosis-relevant key factors and a novel immunogenomic classification.

Gastric Cancer

January 2025

Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.

Background: Gastroesophageal junction adenocarcinoma (GEJAC) exhibits distinct molecular characteristics due to its unique anatomical location. We sought to investigate effective and reliable molecular classification of GEJAC to guide personalized treatment.

Methods: We analyzed the whole genomic, transcriptomic, T-cell receptor repertoires, and immunohistochemical data in 92 GEJAC patients and delineated the landscape of genetic and immune alterations.

View Article and Find Full Text PDF

Kaposi Sarcoma (KS) is a frequently aggressive malignancy caused by Kaposi sarcoma herpesvirus (KSHV/HHV-8). People with immunodeficiencies, including HIV, are at increased risk for developing KS, but our understanding of the contributions of the cellular genome to KS pathogenesis remains limited. To determine if there are cellular genetic alterations in KS that might provide biological or therapeutic insights, we performed whole exome sequencing on 78 KS tumors and matched normal control skin from 59 adults with KS (46 with HIV-associated KS and 13 with HIV-negative KS) receiving treatment at the Uganda Cancer Institute in Kampala, Uganda.

View Article and Find Full Text PDF

Recently, exportin gene family members have been demonstrated to play essential roles in tumor progression. However, research on the clinical significance of exportin gene family members is limited in clear cell renal cell carcinoma (ccRCC). Pan-cancer data, ccRCC multiomics data, and single-cell sequence were included to analyze the differences in DNA methylation modification, single nucleotide variations (SNVs), copy number variations (CNVs), and expression levels of exportin gene family members.

View Article and Find Full Text PDF

A colloidal gold immunochromatographic assay (ICA) based on a dual-antibody sandwich method was developed for the rapid and convenient detection of () antigens in the early stages of infection. Monoclonal antibodies designed as 5B3 targeting the conserved region of 56 kDa outer membrane protein in various strains of were generated through cell fusion and screening techniques and combined with previously prepared polyclonal antibodies as detection antibodies to establish the ICA. Colloidal gold and polyclonal antibody-colloidal gold complexes were synthesized under optimized conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!