AI Article Synopsis

  • Bovine respiratory syncytial virus (BRSV) is a significant cause of respiratory illness in calves and is closely related to human RSV, which affects infants.
  • Researchers created a modified version of the BRSV fusion glycoprotein, named "DS2," that maintains its prefusion state and generates a stronger immune response compared to the traditional post-fusion form.
  • Immunized calves showed no signs of infection when exposed to BRSV, demonstrating that the DS2-stabilized immunogen effectively induced protective immunity, which has implications for both bovine health and the development of human RSV vaccines.

Article Abstract

Bovine respiratory syncytial virus, a major cause of respiratory disease in calves, is closely related to human RSV, a leading cause of respiratory disease in infants. Recently, promising human RSV-vaccine candidates have been engineered that stabilize the metastable fusion (F) glycoprotein in its prefusion state; however, the absence of a relevant animal model for human RSV has complicated assessment of these vaccine candidates. Here, we use a combination of structure-based design, antigenic characterization, and X-ray crystallography to translate human RSV F stabilization into the bovine context. A "DS2" version of bovine respiratory syncytial virus F with subunits covalently fused, fusion peptide removed, and pre-fusion conformation stabilized by cavity-filling mutations and intra- and inter-protomer disulfides was recognized by pre-fusion-specific antibodies, AM14, D25, and MPE8, and elicited bovine respiratory syncytial virus-neutralizing titers in calves >100-fold higher than those elicited by post-fusion F. When challenged with a heterologous bovine respiratory syncytial virus, virus was not detected in nasal secretions nor in respiratory tract samples of DS2-immunized calves; by contrast bovine respiratory syncytial virus was detected in all post-fusion- and placebo-immunized calves. Our results demonstrate proof-of-concept that DS2-stabilized RSV F immunogens can induce highly protective immunity from RSV in a native host with implications for the efficacy of prefusion-stabilized F vaccines in humans and for the prevention of bovine respiratory syncytial virus in calves.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627276PMC
http://dx.doi.org/10.1038/s41541-017-0005-9DOI Listing

Publication Analysis

Top Keywords

bovine respiratory
24
respiratory syncytial
24
syncytial virus
20
human rsv
12
respiratory
9
bovine
8
respiratory disease
8
virus detected
8
rsv
6
syncytial
6

Similar Publications

Background: Anthrax is a life-threatening zoonotic disease caused by Gram-positive, spore-forming bacterium . It manifests as a cutaneous, gastrointestinal, and respiratory disease. The cutaneous form ranges from a self-limiting lesion to severe edematous lesions with toxemic shock.

View Article and Find Full Text PDF

Rapid, sensitive, and visible RPA-LFD assay for BoHV-1 and BoHV-5.

Microbiol Spectr

January 2025

National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.

Unlabelled: Bovine herpesvirus (BoHV) infection poses a significant threat to the healthy development of the cattle industry. BoHV-1 primarily causes infectious bovine rhinotracheitis, while BoHV-5 is associated with bovine necrotic meningoencephalitis. These two pathogens not only exhibit a high correlation in antigenicity and genetic background but, more importantly, can establish latent infections within the bovine ganglion.

View Article and Find Full Text PDF

Introduction: Antimicrobial resistance (AMR) is a growing threat to the efficacy of antimicrobials in humans and animals, including those used to control bovine respiratory disease (BRD) in high-risk calves entering western Canadian feedlots. Successful mitigation strategies require an improved understanding of the epidemiology of AMR. Specifically, the relative contributions of antimicrobial use (AMU) and contagious transmission to AMR emergence in animal populations are unknown.

View Article and Find Full Text PDF

Detection and Phylogenetic Characterization of Influenza D in Swedish Cattle.

Viruses

December 2024

Department of Microbiology, Swedish Veterinary Agency, Ulls väg 2B, 751 89 Uppsala, Sweden.

Increased evidence suggests that cattle are the primary host of Influenza D virus (IDV) and may contribute to respiratory disease in this species. The aim of this study was to detect and characterise IDV in the Swedish cattle population using archived respiratory samples. This retrospective study comprised a collection of a total 1763 samples collected between 1 January 2021 and 30 June 2024.

View Article and Find Full Text PDF

Application of Genomic Selection in Beef Cattle Disease Prevention.

Animals (Basel)

January 2025

Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6610, USA.

Genomic applications in beef cattle disease prevention have gained traction in recent years, offering new strategies for improving herd health and reducing economic losses in the livestock industry. Advances in genomics, including identification of genetic markers linked to disease resistance, provide powerful tools for early detection, selection, and management of cattle resistant to infectious diseases. By incorporating genomic technologies such as whole-genome sequencing, genotyping, and transcriptomics, researchers can identify specific genetic variants associated with resistance to pathogens like bovine respiratory disease and Johne's disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!