NudCD1, also known as CML66 or OVA66, is a protein initially identified as overexpressed in patients with chronic myelogenous leukemia. The mRNA of NudCD1 is expressed in heart and testis of normal tissues, and is overexpressed in several cancers. Previous studies have shown that the expression level of the protein correlates with tumoral phenotype, possibly interacting upstream of the Insulin Growth Factor - 1 Receptor (IGF-1R). The gene encoding the NudCD1 protein consists of 12 exons that can be alternative spliced, leading to the expression of three different isoforms. These isoforms possess a common region of 492 amino acids in their C-terminus region and have an isoform specific N-terminus. To determine the distinct function of each isoforms, we have localised the isoforms within the cells using immunofluorescence microscopy and used a quantitative proteomics approach (SILAC) to identify specific protein interaction partners for each isoforms. Localization studies showed a different subcellular distribution for the different isoforms, with the first isoform being nuclear, while the other two isoforms have distinct cytoplasmic and nuclear location. We found that the different NudCD1 isoforms have unique interacting partners, with the first isoform binding to a putative RNA helicase named DHX15 involved in mRNA splicing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5636827 | PMC |
http://dx.doi.org/10.1038/s41598-017-13441-w | DOI Listing |
Alzheimers Dement
December 2024
Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA.
Introduction: Type 2 diabetes increases the risk of Alzheimer's disease (AD) dementia. Insulin signaling dysfunction exacerbates tau protein phosphorylation, a hallmark of AD pathology. However, the comprehensive impact of diabetes on patterns of AD-related phosphoprotein in the human brain remains underexplored.
View Article and Find Full Text PDFCommun Biol
December 2024
Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
Epithelial-to-mesenchymal transition (EMT) is a conserved cellular process critical for embryogenesis, wound healing, and cancer metastasis. During EMT, cells undergo large-scale metabolic reprogramming that supports multiple functional phenotypes including migration, invasion, survival, chemo-resistance and stemness. However, the extent of metabolic network rewiring during EMT is unclear.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA.
Carbapenem-resistant Acinetobacter baumannii (CRAb) is an urgent bacterial threat to public health, with only a few treatment options and a > 50% fatality rate. Although several resistance mechanisms are understood, it is still impossible to predict which mutations are most likely to occur. Here, we demonstrate that independent samples of Ab, exposed to different carbapenems with escalating concentrations, show concentration- and carbapenem-dependent trends in β-lactamase-isoform expression.
View Article and Find Full Text PDFJ Clin Periodontol
December 2024
Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain.
Aim: To discover new salivary biomarkers to diagnose periodontitis and evaluate the impact of age and smoking on predictive capacity.
Material And Methods: Saliva samples were collected from 44 healthy periodontal individuals and 41 with periodontitis. Samples were analysed by sequential window acquisition of all theoretical mass spectra (SWATH-MS), and proteins were identified by employing the UniProt database.
J Med Chem
December 2024
Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.
Members of the casein kinase 1 (CK1) family have emerged as key regulators of cellular signaling and as potential drug targets. Functional annotation of the 7 human isoforms would benefit from isoform-selective inhibitors, allowing studies on the role of these enzymes in normal physiology and disease pathogenesis. However, due to significant sequence homology within the catalytic domain, isoform selectivity is difficult to achieve with conventional small molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!