We have examined alterations in phosphate pools during cellular recovery from radiation damage in intact, wild-type diploid yeast cells using 31P nuclear magnetic resonance (NMR) spectroscopy. Concurrent cell survival analysis was determined following exposure to 60Co gamma-radiation. Cells held in citrate-buffered saline (CBS) showed increased survival with increasing time after irradiation (liquid holding recovery, LHR) with no further recovery beyond 48 h. Addition of 100 mmol dm-3 glucose to the recovery medium resulted in greater recovery. In the presence of 5 mmol dm-3 2-deoxyglucose (2-DG), LHR was completely inhibited. NMR analyses were done on cells perfused in agarose threads and maintained under conditions similar to those in the survival studies. ATP was observable by NMR only when glucose was present in the recovery medium. In control cells, ATP concentrations increased and plateaued with increasing recovery time. With increasing radiation dose the increase in ATP was of lesser magnitude, and after 2000 Gy no increase was observed. These observations suggest that either the production of ATP in irradiated cells is suppressed or there is enhanced ATP utilization for repair of radiation damage. In CBS with 100 mmol dm-3 glucose, a dose-dependent decrease in polyphosphate (polyP) was detectable with no concurrent increase in inorganic phosphate (Pi). In the absence of an external energy source, such as glucose, there was a slight increase in Pi. This suggests that polyP may be used as an alternative energy supply. When 2-DG was present in the recovery medium, polyP decreased, but there was a simultaneous increase in Pi with increasing radiation dose and recovery time. This suggests that the polyP are hydrolyzed as a source of phosphates for repair of radiation damage.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09553008814551991DOI Listing

Publication Analysis

Top Keywords

radiation damage
16
mmol dm-3
12
recovery medium
12
recovery
10
alterations phosphate
8
cellular recovery
8
recovery radiation
8
100 mmol
8
dm-3 glucose
8
glucose recovery
8

Similar Publications

Autophagy activation within inflammatory microenvironment improved the therapeutic effect of MSC-Derived extracellular Vesicle in SLE.

J Adv Res

January 2025

Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Clinical Research and Experimental Center, Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Department of Clinical Laboratory, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University. Guangzhou 510120, China. Electronic address:

Introduction: Developing strategies to improve the therapeutic efficacy of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) in autoimmune diseases have garnered increased attention.

Objectives: To evaluate whether rapamycin-induced autophagy within the systemic lupus erythematosus (SLE) inflammatory microenvironment (Rapa-SLE) augments the therapeutic effects of MSC-derived EVs in SLE.

Methods: The therapeutic potential of the resulting EVs (Rapa-SLE-EV) was assessed in MRL/lpr mice.

View Article and Find Full Text PDF

Following traumatic brain injury (TBI), inhibition of the Na-K-Cl cotransporter1 (NKCC1) has been observed to alleviate damage to the blood-brain barrier (BBB). However, the underlying mechanism for this effect remains unclear. This study aimed to investigate the mechanisms by which inhibiting the NKCC1 attenuates disruption of BBB integrity in TBI.

View Article and Find Full Text PDF

As a new type of pollutant, the harm caused by microplastics (MPs) to organisms has been the research focus. Recently, the proportion of MPs ingested through the digestive tract has gradually increased with the popularity of fast-food products, such as takeout. The damage to the digestive system has attracted increasing attention.

View Article and Find Full Text PDF

Position in proton Bragg curve influences DNA damage complexity and survival in head and neck cancer cells.

Clin Transl Radiat Oncol

March 2025

Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.

Background And Purpose: Understanding the cellular and molecular effect of proton radiation, particularly the increased DNA damage complexity at the distal end of the Bragg curve, is current topic of investigation. This work aims to study clonogenic survival and DNA damage foci kinetics of a head and neck squamous cell carcinoma cell line at various positions along a double passively scattered Bragg curve. Complementary studies are conducted to gain insights into the link between cell survival variations, experimentally yielded foci and the number and complexity of double strand breaks (DSBs).

View Article and Find Full Text PDF

Resistance to radiotherapy remains a critical barrier in treating colorectal cancer (CRC), particularly in cases of locally advanced rectal cancer (LARC). To identify key kinases involved in CRC radioresistance, we employed a kinase-targeted CRISPR-Cas9 library screen. This approach aimed to identify potential kinase inhibitors as radiosensitizers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!