Motile and immotile (or primary) cilia are microtubule-based structures that mediate multiple cellular functions, including the transduction of environmental cues, developmental signaling, cellular motility, and modulation of fluid flow. Although their core architectures are similar, motile and primary cilia exhibit marked structural differences that underlie distinct functional properties. However, the extent to which ciliogenesis mechanisms are shared between these different cilia types is not fully described. Here, we report that the atypical MAP kinase MAPK15 (ERK7/8), implicated in the formation of vertebrate motile cilia, also regulates the formation of primary cilia in sensory neurons and human cells. We find that MAPK15 localizes to a basal body subdomain with the ciliopathy protein BBS7 and to cell-cell junctions. MAPK15 also regulates the localization of ciliary proteins involved in cilium structure, transport, and signaling. Our results describe a primary cilia-related role for this poorly studied member of the MAPK family , and indicate a broad requirement for MAPK15 in the formation of multiple ciliary classes across species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5714457PMC
http://dx.doi.org/10.1534/genetics.117.300383DOI Listing

Publication Analysis

Top Keywords

primary cilia
12
atypical map
8
map kinase
8
kinase mapk15
8
human cells
8
primary
5
mapk15
5
cilia
5
primary cilium
4
formation
4

Similar Publications

Stem Cells Within Three-Dimensional-Printed Scaffolds Facilitate Airway Mucosa and Bone Regeneration and Reconstruction of Maxillary Defects in Rabbits.

Medicina (Kaunas)

December 2024

Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.

: Current craniofacial reconstruction surgical methods have limitations because they involve facial deformation. The craniofacial region includes many areas where the mucosa, exposed to air, is closely adjacent to bone, with the maxilla being a prominent example of this structure. Therefore, this study explored whether human neural-crest-derived stem cells (hNTSCs) aid bone and airway mucosal regeneration during craniofacial reconstruction using a rabbit model.

View Article and Find Full Text PDF

Breaking Left-Right Symmetry by the Interplay of Planar Cell Polarity, Calcium Signaling and Cilia.

Cells

December 2024

Laboratoire de Biologie du Développement, LBD, CNRS UMR7622, INSERM U1156, Sorbonne Université, F-75005 Paris, France.

The formation of the embryonic left-right axis is a fundamental process in animals, which subsequently conditions both the shape and the correct positioning of internal organs. During vertebrate early development, a transient structure, known as the left-right organizer, breaks the bilateral symmetry in a manner that is critically dependent on the activity of motile and immotile cilia or asymmetric cell migration. Extensive studies have partially elucidated the molecular pathways that initiate left-right asymmetric patterning and morphogenesis.

View Article and Find Full Text PDF

Interpreting Variants of Uncertain Significance in PCD: Abnormal Splicing Caused by a Missense Variant of DNAAF3.

Mol Genet Genomic Med

January 2025

The State Key Laboratory for Complex Severe and Rare Diseases, the State Key Sci-Tech Infrastructure for Translational Medicine, Peking Union Medical College Hospital, Beijing, China.

Background: Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterized by dysfunction of motile cilia. While approximately 50 genes have been identified, around 25% of PCD patients remain genetically unexplained; elucidating the pathogenicity of specific variants remains a challenge.

Methods: Whole exome sequencing (WES) and Sanger sequencing were conducted to identify potential pathogenic variants of PCD.

View Article and Find Full Text PDF

The physiological and clinical importance of motile cilia in reproduction is well recognized, however, the specific role they play in transport through the oviduct and how ciliopathies lead to subfertility and infertility is still unclear. The contribution of cilia beating, fluid flow, and smooth muscle contraction to overall progressive transport within the oviduct remains under debate. Therefore, we investigated the role of cilia in the oviduct transport of preimplantation eggs and embryos using a combination of genetic and advanced imaging approaches.

View Article and Find Full Text PDF

CRISPR/Cas9-mediated knockout of Tektin 4-like gene (TEKT4L) causes male sterility of Cydia pomonella.

Insect Biochem Mol Biol

January 2025

College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, China; Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China. Electronic address:

The sterile insect technique (SIT) is a well-established and environmentally benign method for population control. Identifying genes that regulate insect fertility while preserving growth and development is crucial for implementing a novel SIT-based pest management approach utilizing CRISPR/Cas9 to target these genes for genetic manipulation. Tektin (TEKT), an essential alpha-helical protein pivotal in sperm formation due to its role in cilia and flagella assembly, has garnered attention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!