Adolescence is associated with the maturation of the hypothalamic-pituitary-adrenal (HPA) axis, the major neuroendocrine axis mediating the hormonal stress response. Adolescence is also a period in development marked by a variety of stress-related vulnerabilities, including psychological and physiological dysfunctions. Many of these vulnerabilities are accompanied by a disrupted HPA axis. In adult mice, a model of disrupted HPA function has been developed using oral chronic corticosterone administration via the drinking water, which results in various physiological and neurobehavioral abnormalities, including changes in stress reactivity and anxiety-like behaviors. In an effort to further complement and extend this model, we tested the impact of HPA disruption in adolescent mice. We also examined whether this disruption led to different outcomes depending on whether the treatment happened during adolescence or adulthood. In the current set of experiments, we exposed adult (70days of age) or adolescent (30days of age) male C57BL/6N mice to 4 weeks of either 0 or 25μg/ml oral corticosterone via their drinking water. We measured body weight during treatment and plasma corticosterone levels and activation of the paraventricular nucleus (PVN), as indexed by FOS immunohistochemistry, before and after a 30min session of restraint stress. Our data indicate that adolescent animals exposed to chronic corticosterone showed weight loss during treatment, an effect not observed in adults. Further, we found stress failed to elevate plasma corticosterone levels in treated mice, regardless of whether exposure occurred in adulthood or adolescence. Despite this reduced hormonal responsiveness, we found significant neural activation in the PVN of both adult- and adolescent-treated mice, indicating a dissociation between stress-induced peripheral and central stress responses following chronic corticosterone exposure. Moreover, stress-induced neural activation in the PVN was unaffected by chronic corticosterone treatment in adult animals, but led to a hyper-responsive PVN in the corticosterone-treated adolescent animals, suggesting an age-specific effect of corticosterone treatment on later PVN stress reactivity. Together, these experiments highlight the influence of developmental stage on somatic and neuroendocrine outcomes following chronic HPA disruption by noninvasive, oral corticosterone treatment. Given the substantial vulnerabilities to HPA dysfunctions during adolescence this model may prove useful in better understanding these vulnerabilities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.psyneuen.2017.10.001 | DOI Listing |
J Tradit Complement Med
January 2025
Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan.
Background And Aim: (CM) and (AM) are medicinal mushrooms with potential applications in the treatment of mood disorders, including depression and anxiety. While research suggests that both CM and AM possess anti-inflammatory properties and hold potential for treating depression when administered separately, there is limited knowledge about their efficacy when combined in a formula, as well as the underlying mechanism involving the modulation of microglia.
Experimental Procedure: Rats received oral administrations of the low-dose formulation, medium-dose formulation, and high-dose formulation over 28 consecutive days as part of the UCMS protocols.
J Ethnopharmacol
January 2025
Biochemistry Department, Center of Biosciences, Universidade Federal de Pernambuco, Recife, Brazil; Center for Therapeutic Innovation Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, Brazil. Electronic address:
Ethnopharmacological Relevance: Anxiety and depression are leading causes of disability worldwide, often exacerbated by chronic stress. Schinus terebinthifolia Raddi. has been used in traditional medicine for several purposes.
View Article and Find Full Text PDFNPJ Sci Food
January 2025
Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea.
Chronic stress disrupts gut microbiota homeostasis, contributing to anxiety and depression. This study explored the effects of Limosilactobacillus reuteri fermented brown rice (FBR) on anxiety using an ICR mouse chronic mild stress (CMS) model. Anxiety was assessed through body weight, corticosterone levels, neurotransmitter profiles, and behavioral tests.
View Article and Find Full Text PDFNutrients
December 2024
Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
Chronic stress exposure has been widely recognized as a significant contributor to numerous central nervous system (CNS) disorders, leading to debilitating behavioral changes such as anxiety, depression, and cognitive impairments. The prolonged activation of the hypothalamic-pituitary-adrenal (HPA) axis during chronic stress disrupts the neuroendocrine balance and has detrimental effects on neuronal function and survival. () Gaertn.
View Article and Find Full Text PDFPsychoneuroendocrinology
December 2024
Hotchkiss Brain Institute, Mathison Centre for Mental Health Research and Education, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada. Electronic address:
Management of stress and anxiety is often listed as the primary motivation behind cannabis use. Human research has found that chronic cannabis use is associated with increased basal cortisol levels but blunted neuroendocrine responses to stress. Preclinical research has demonstrated mixed effects of Δ-tetrahydrocannabinol (THC; the psychoactive constituent of cannabis), much of which is suggestive of dose-dependent effects; however, the predominance of this work has employed an injection method to deliver cannabis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!