It has been suggested that childhood exposure to neurotoxicants may increase the risk of Parkinson's disease (PD) or other neurodegenerative disease in adults. Some recessive forms of PD have been linked to loss-of-function mutations in the Park2 gene that encodes for parkin. The purpose of this pilot study was to evaluate whether responses to neonatal manganese (Mn) exposure differ in mice with a Park2 gene defect (parkin mice) when compared with a wildtype strain (C57BL/6J). Neonatal parkin and C57BL/6J littermates were randomly assigned to 0, 11, or 25mg Mn/kg-day dose groups with oral exposures occurring from postnatal day (PND) 1 through PND 28. Motor activity was measured on PND 19-22 and 29-32. Tissue Mn concentrations were measured in liver, femur, olfactory bulb, frontal cortex, and striatum on PND 29. Hepatic and frontal cortex gene expression of Slc11a2, Slc40a1, Slc30a10, Hamp (liver only), and Park2 were also measured on PND 29. Some strain differences were seen. As expected, decreased hepatic and frontal cortex Park2 expression was seen in the parkin mice when compared with C57BL/6J mice. Untreated parkin mice also had higher liver and femur Mn concentrations when compared with the C57BL/6J mice. Exposure to≥11mg Mn/kg-day was associated with increased brain Mn concentrations in all mice, no strain difference was observed. Manganese exposure in C57Bl6, but not parkin mice, was associated with a negative correlation between striatal Mn concentration and motor activity. Manganese exposure was not associated with changes in frontal cortex gene expression. Decreased hepatic Slc30a10, Slc40a1, and Hamp expression were seen in PND 29 C57BL/6J mice given 25mg Mn/kg-day. In contrast, Mn exposure was only associated with decreased Hamp expression in the parkin mice. Our results suggest that the Parkin gene defect did not increase the susceptibility of neonatal mice to adverse health effects associated with high-dose Mn exposure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6250062 | PMC |
http://dx.doi.org/10.1016/j.neuro.2017.10.002 | DOI Listing |
Acta Pharmacol Sin
January 2025
Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
Diabetic cardiomyopathy causes end-stage heart failure, resulting in high morbidity and mortality in type 2 diabetes mellitus (T2DM) patients. Long-term treatment targeting metabolism is an emerging field in the treatment of diabetic cardiomyopathy. Semaglutide, an agonist of the glucagon-like peptide 1 receptor, is clinically approved for the treatment of T2DM and provides cardiac benefits in patients.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
Recipients often suffer from hyperlactatemia during liver transplantation (LT), but whether hyperlactatemia exacerbates hepatic ischemia-reperfusion injury (IRI) after donor liver implantation remains unclear. Here, the role of hyperlactatemia in hepatic IRI is explored. In this work, hyperlactatemia is found to exacerbate ferroptosis during hepatic IRI.
View Article and Find Full Text PDFChin Med J Pulm Crit Care Med
December 2024
Medical Research Center; The Zhejiang Key Laboratory of Intelligent Cancer, Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
Background: Necroptosis is a form of programmed cell death resulting in tissue inflammation due to the release of intracellular contents. Its role and regulatory mechanism in the context of acute lung injury (ALI) are unclear. Parkin (Prkn), an E3 ubiquitin ligase, has recently been implicated in the regulation of necroptosis.
View Article and Find Full Text PDFMicrobiome
January 2025
Innovative Institute of Animal Health Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangdong Province, Guangzhou, 510025, China.
Background: Alzheimer's disease (AD) is a prevalent neurodegenerative disease (ND). In recent years, multiple clinical and animal studies have shown that mitochondrial dysfunction may be involved in the pathogenesis of AD. In addition, short-chain fatty acids (SCFA) produced by intestinal microbiota metabolism have been considered to be important factors affecting central nervous system (CNS) homeostasis.
View Article and Find Full Text PDFJ Biomed Sci
January 2025
Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
Background: Enolase 1 (ENO1) is a conserved glycolytic enzyme that regulates glycolysis metabolism. However, its role beyond glycolysis in the pathophysiology of multiple myeloma (MM) remains largely elusive. Herein, this study aimed to elucidate the function of ENO1 in MM, particularly its impact on mitophagy under bortezomib-induced apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!