The energies and lifetimes of the excited states (S, S, S, T) of a diazotetrahydrofuranone were determined using experimental and computational methods. It was shown that direction of the diazoketone photochemical transformations without elimination of nitrogen is determined by multiplicity and energy of the excited state, generated by UV irradiation of diazo compound: isomerization to α-ketodiazirine proceeds from the singlet S state, whereas the alternative process of C-H insertion with hydrazone formation occurs through the triplet T state. The most probable excited state that leads to elimination of nitrogen and Wolff rearrangement is one of the highest singlet excited states of diazotetrahydrofuranone.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.7b01848DOI Listing

Publication Analysis

Top Keywords

elimination nitrogen
12
excited states
8
states diazotetrahydrofuranone
8
excited state
8
light-induced reactions
4
reactions diazotetrahydrofuranone
4
diazotetrahydrofuranone elimination
4
nitrogen experimental
4
experimental mechanistic
4
mechanistic study
4

Similar Publications

Purpose: Previous in vitro studies on porcine retinal arterioles have shown that the frequency and amplitude of retinal vasomotion can be affected by hypoxia and nitric oxide (NO). However, it is unknown whether these effects can be reproduced in humans in vivo.

Methods: Video recordings of retinal arterioles from 40 healthy subjects were studied before and during breathing of a hypoxic gas mixture consisting of 12.

View Article and Find Full Text PDF

Anthracycline doxorubicin (DOX) remains the first-line chemotherapeutic drug for the efficient treatment of breast cancer, but its severe cardiotoxicity limits its long-term application in clinical tumor chemotherapy. Until now, the pathogenesis mechanism of DOX-induced cardiotoxicity (DIC) is still not fully understood. According to current studies, the oxidative stress caused by the imbalance of reactive oxygen species (ROS) and reactive nitrogen species (RNS) production and mitochondrial dysfunction in myocardial cells are closely related to DIC.

View Article and Find Full Text PDF

The integration of membrane separation with heterogeneous advanced oxidation processes is a prospective strategy for the elimination of contaminants during wastewater treatment. Fe-based catalysts and the green oxidant peracetic acid (PAA) are desirable candidates for the development of catalytic membranes because they are environmentally friendly. However, the construction of catalytic ceramic membranes (CMs) modified with efficient Fe-based catalysts that generate increased amounts of high-valent Fe-O species during PAA activation for the degradation of specific pollutants, especially during instantaneous membrane filtration, remains challenging.

View Article and Find Full Text PDF

High salt concentrations pose a significant challenge to the efficiency of activated sludge (AS) in phenolic wastewater treatment. As a cellular osmoprotectant, proline (Pro) has the capacity to increase the salt tolerance of microbes in AS, hence improving the efficiency of phenolic wastewater degradation. Nevertheless, the precise mechanism behind this enhancement remains ambiguous.

View Article and Find Full Text PDF

Heavy metal and nitrogen contaminations are serious concerns in aquatic environments. Marichromatium gracile YL28, a marine purple sulfur bacterium, has shown great potential as a bioremediation agent for removing inorganic nitrogen from marine water. This study further investigated its ability to simultaneously absorb heavy metals, including Pb(II), Cu(II), Cd(II) and Cr(VI), and remove inorganic nitrogen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!