Due to the high-cost and limitations of current wound healing treatments, the search for alternative approaches or drugs, particularly from medicinal plants, is of key importance. In this study, we report anti-inflammatory and wound healing activities of the major calophyllolide (CP) compound isolated from Calophyllum inophyllum Linn. The results showed that CP had no effect on HaCaT cell viability over a range of concentrations. CP reduced fibrosis formation and effectively promoted wound closure in mouse model without causing body weight loss. The underlying molecular mechanisms of wound repair by CP was investigated. CP markedly reduced MPO activity, and increased M2 macrophage skewing, as shown by up-regulation of M2-related gene expression, which is beneficial to the wound healing process. CP treatment prevented a prolonged inflammatory process by down-regulation of the pro-inflammatory cytokines-IL-1β, IL-6, TNF-α, but up-regulation of the anti-inflammatory cytokine, IL-10. This study is the first to indicate a plausible role for CP in accelerating the process of wound healing through anti-inflammatory activity mechanisms, namely, by regulation of inflammatory cytokines, reduction in MPO, and switching of macrophages to an M2 phenotype. These findings may enable the utilization of CP as a potent therapeutic for cutaneous wound healing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5636079PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0185674PLOS

Publication Analysis

Top Keywords

wound healing
24
anti-inflammatory wound
8
healing activities
8
isolated calophyllum
8
calophyllum inophyllum
8
inophyllum linn
8
wound
7
healing
6
anti-inflammatory
4
activities calophyllolide
4

Similar Publications

Objective: The surgical team in this study examined the efficacy of a modified reverse sural neurocutaneous flap repair in treating soft tissue defects of the ankle and foot caused by accidents.

Methods: This study enrolled 89 patients treated for soft tissue defects of the ankle or foot between January 2007 and December 2023. The patients were divided into two groups: 44 patients underwent a modified reverse sural neurocutaneous flap repair, while 45 received traditional treatment.

View Article and Find Full Text PDF

Incidence of seroma and postoperative complications after breast surgery before and during the Covid-19 pandemic: results from a retrospective multicenter analysis.

BMC Cancer

January 2025

Department of Gynecology with Breast Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charité Universitätsmedizin Berlin, Berlin, Germany.

Background: In recent years, there has been a growing number of case reports documenting delayed seroma in patients with a history of breast surgery and reconstruction. The occurrence of these seromas has been associated with prior SARS-CoV-2 infection or SARS-CoV-2 vaccination. So far, there are few systematic analyses on postoperative complications in breast surgery since the emergence of the SARS-CoV-2 pandemic.

View Article and Find Full Text PDF

Anticancer effect of the antirheumatic drug leflunomide on oral squamous cell carcinoma by the inhibition of tumor angiogenesis.

Discov Oncol

January 2025

Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.

Objectives: Leflunomide (LEF) is a conventional synthetic disease-modifying antirheumatic drug and suppresses T-cell proliferation and activity by inhibiting pyrimidine synthesis using dihydroorotase dehydrogenase (DHODH); however, several studies have demonstrated that LEF possesses anticancer and antiangiogenic effects in some malignant tumors. Therefore, we investigated the anticancer and antiangiogenic effects of LEF on oral squamous cell carcinoma (OSCC).

Methods: To evaluate the inhibitory effect of LEF on OSCC, cell proliferation and wound-healing assays using human OSCC cell lines were performed.

View Article and Find Full Text PDF

Facile Formulation of a Resveratrol-Mediated Multibond Network Hydrogel with Efficient Sustainable Antibacterial, Reactive Oxygen Species Scavenging, Pro-Angiogenesis, and Immunomodulation Activities for Accelerating Infected Wound Healing.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China.

The management of chronic infected wounds remains a significant clinical challenge, largely due to the deficiency of optimal wound dressings with adequate mechanical strength, appropriate adhesiveness, and efficient sustainable antibacterial, reactive oxygen species (ROS) scavenging, pro-angiogenesis, and immunomodulation properties. To address such a dilemma, we employed a simple and facile strategy to utilize resveratrol (RSV) as a functional component to mediate hydrogel gelation in this study. The structure of this obtained hydrogel was supported by a multibond network, which not only endowed the resultant product with superior mechanical strength and moderate adhesiveness but also effectively prolonged the bioavailability of RSV.

View Article and Find Full Text PDF

Diabetic wounds present a considerable challenge in modern medicine due to their prolonged healing process, driven by sustained inflammation and impaired vascular regeneration. This study introduces a novel hydrogel network through osmosis, utilizing hyaluronic acid (HA) and phytic acid (PA) for their anti-inflammatory and antioxidant properties, respectively. By incorporating recombinant Human Amelogenin (rhAM), known for its angiogenic potential, we aimed to develop the HA-PA-rhAM hydrogel to enhance wound healing in diabetic rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!