Understanding the charge transport characteristics and their limiting factors in organolead halide perovskites is of great importance for the development of competitive and economically advantageous photovoltaic systems derived from these materials. In the present work, we examine the charge carrier mobilities in CHNHPbI (MAPI) thin films obtained from a one-step synthesis procedure and in planar n-i-p devices based on these films. By performing time-of-flight measurements, we find mobilities around 6 cm/V s for electrons and holes in MAPI thin films, whereas in working solar cells, the respective effective mobility values are reduced by 3 orders of magnitude. From complementary experiments on devices with varying thicknesses of electron and hole transport layers, we identify the charge extraction layers and the associated interfaces rather than the perovskite material itself as the major limiting factors of the charge carrier transport time in working devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b09567DOI Listing

Publication Analysis

Top Keywords

charge transport
8
solar cells
8
charge extraction
8
extraction layers
8
limiting factors
8
charge carrier
8
mapi thin
8
thin films
8
charge
6
transport limitations
4

Similar Publications

The coherent spin waves, magnons, can propagate without accompanying charge transports and Joule heat dissipation. Room-temperature and long-distance spin waves propagating within nanoscale spin channels are considered promising for integrated magnonic applications, but experimentally challenging. Here we report that long-distance propagation of chiral magnonic edge states can be achieved at room temperature in manganite thin films with long, antiferromagnetically coupled spin spirals (millimetre length) and low magnetic Gilbert damping (~3.

View Article and Find Full Text PDF

Emergence of ferroelectricity in Sn-based perovskite semiconductor films by iminazole molecular reconfiguration.

Nat Commun

January 2025

State Key Laboratory of Photovoltaic Science and Technology, Department of Materials Science, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China.

Ferroelectric semiconductors have the advantages of switchable polarization ferroelectric field regulation and semiconductor transport characteristics, which are highly promising in ferroelectric transistors and nonvolatile memory. However, it is difficult to prepare a Sn-based perovskite film with both robust ferroelectric and semiconductor properties. Here, by doping with 2-methylbenzimidazole, Sn-based perovskite [93.

View Article and Find Full Text PDF

We measure the high-intensity laser propagation throughout meter-scale, channel-guided laser-plasma accelerators by adjusting the length of the plasma channel on a shot-by-shot basis, showing high-quality guiding of 500 TW laser pulses over 30 cm in a hydrogen plasma of density n_{0}≈1×10^{17}  cm^{-3}. We observed transverse energy transport of higher-order modes in the first ≈12  cm of the plasma channel, followed by quasimatched propagation, and the gradual, dark-current-free depletion of laser energy to the wake. We quantify the laser-to-wake transfer efficiency limitations of currently available petawatt-class lasers and demonstrate via simulation how control over the laser mode can significantly improve beam parameters.

View Article and Find Full Text PDF

Charge transport in materials has an impact on a wide range of devices based on semiconductor, battery, or superconductor technology. Charge transport in sliding charge density waves (CDW) differs from all others in that the atomic lattice is directly involved in the transport process. To obtain an overall picture of the structural changes associated to the collective transport, the large coherent x-ray beam generated by an x-ray free-electron laser (XFEL) source was used.

View Article and Find Full Text PDF

Possible Sliding Regimes in Twisted Bilayer WTe_{2}.

Phys Rev Lett

December 2024

Department of Physics, Stanford University, Stanford, California 94305, USA.

Inspired by the observation of increasingly one-dimensional (1D) behavior with decreasing temperature in small-angle twisted bilayers of WTe_{2} (tWTe_{2}), we theoretically explore the exotic sliding regimes that could be realized in tWTe_{2}. At zero displacement field, while hole-doped tWTe_{2} can be thought of as an array of weakly coupled conventional two-flavor 1D electron gases (1DEGs), the electron-doped regime is equivalent to coupled four-flavor 1DEGs, due to the presence of an additional "valley" degree of freedom. In the decoupled limit, the electron-doped system can thus realize phases with a range of interesting ordering tendencies, including 4k_{F} charge-density-wave and charge-4e superconductivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!