Nanowire (NW) complementary inverters based on NW channels and NW electrodes are a promising core logic unit of future subminiature, high density and textile-type configured electronic circuits. However, existing approaches based on short NWs (<150 μm) or non-woven nanofibers cannot provide precisely-coordinated NW inverters due to the difficulty in the position and alignment control of each NW. In particular, the large-scale fabrication of highly-aligned metal nanoelectrode (NE) arrays with low resistivity is a challenging issue. Here, we developed large-scale-aligned AgNE arrays with very low resistivity by using printed NW lithography, and then demonstrated NW complementary inverters by combining with direct-printed organic semiconducting NWs. The width of the AgNEs was controlled from 250 to 1000 nm; their resistivity was 2.6 μΩ cm which is quite comparable with that of Ag films (1.6 μΩ cm). We expect that this approach will facilitate advances in the large-scale fabrication of nanoelectronics which will be compatible with printed electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7nr06152h | DOI Listing |
ACS Appl Bio Mater
January 2025
Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma 376-8515, Japan.
Rapid and sensitive detection of virus-related antigens and antibodies is crucial for controlling sudden seasonal epidemics and monitoring neutralizing antibody levels after vaccination. However, conventional detection methods still face challenges related to compatibility with rapid, highly sensitive, and compact detection apparatus. In this work, we developed a Si nanowire (SiNW)-based field-effect biosensor by precisely controlling the process conditions to achieve the required electrical properties via complementary metal-oxide-semiconductor (CMOS)-compatible nanofabrication processes.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Gerontology, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200082, P. R. China.
An acute wound is the most common type of skin injury. Developing wound dressings with excellent mechanical properties, wound protection, comfort, angiogenic capacity and therapeutic effects is significant for effective treatments, yet remains challenging. Herein, we have designed a novel HAP-Alg composite dressing comprising a complementary ultralong hydroxyapatite (HAP) nanowire bio-paper and calcium alginate hydrogel.
View Article and Find Full Text PDFFood Chem
February 2025
State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China. Electronic address:
Thiabendazole (TBZ) residues in food pose a serious threat to public health. Herein, an ultrasensitive molecularly imprinted electrochemiluminescence sensor (MIECLS) was developed to detect TBZ, using electron autoregulation in nitrogen-doped graphdiyne‑copper nanowires (NGDY-CuNWs) composite luminophore and cyclic amplification strategy of tin disulfide nanosheets (SnSNSs). NGDY-CuNWs composite luminophores were formed by spontaneous chemisorption to provide electrochemiluminescence signals, and the charge redistribution in it resulted in a built-in potential that improved the electron transfer and redox reaction rate.
View Article and Find Full Text PDFNanotechnology
November 2024
Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
In this study, molecular beam epitaxial growth of strain-driven three-dimensional self-assembled Ge/GeSi islands on silicon-on-insulator (SOI) substrates, along with their optical and photodetection characteristics, have been demonstrated. The as-grown islands exhibit a bimodal size distribution, consisting of both Ge and GeSi alloy islands, and show significant photoluminescence (PL) emission at room temperature, specifically near optical communication wavelengths. Additionally, these samples were used to fabricate a Ge/GeSi islands/Si nanowire based phototransistor using a typical e-beam lithography process.
View Article and Find Full Text PDFNano Lett
September 2024
School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, Nanjing University, 210023 Nanjing, China.
The high operating voltage of conventional nanoelectromechanical switches, typically tens of volts, is much higher than the driving voltage of the complementary metal oxide semiconductor integrated circuit (∼1 V). Though the operating voltage can be reduced by adopting a narrow air gap, down to several nanometers, this leads to formidable manufacturing challenges and occasionally irreversible switch failures due to the surface adhesive force. Here, we demonstrate a new nanowire-morphed nanoelectromechanical (NW-NEM) switch structure with ultralow operation voltages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!