Reversible phosphorylation plays a crucial role in regulating protein activities and functions. Sexual reproduction directly affects yield of most agricultural crops. As the male reproductive organ, anther generates microspores (pollen), delivering gametes (sperms) to complete double fertilization in higher plants. Here, we took the advantage of Nano UHPLC-MS/MS to analyze maize (Zea mays, B73) early anthers at proteomic and phosphoproteomic levels, to explore the protein and phosphorylation modification regulatory networks controlling maize anther development. Our proteomic analysis identified 3 016 unique peptides, belonging to 1 032 maize proteins. MapMan analysis revealed variously potential proteins associated with maize anther development, such as receptor-like kinases (GRMZM2G082823_P01 and GRMZM5G805485_P01). Using phospho-peptides enriched by TiO2 affinity chromatography, our phosphoproteomic analysis detected 257 phospho-peptides from 210 phosphoproteins, discovering 223 phosphosites. Compared to the 86 maize phosphoproteins collected in the Plant Protein Phosphorylation Data Base (P3DB), we found that 203 phosphoproteins and 218 phosphosites were not revealed before. Further bioinformatics analysis revealed that phosphorylation of 14-3-3 proteins, kinases, phosphatases, transcription factors, cell cycle and chromatin structure related proteins might play important roles in regulating normal anther development in maize. Our findings not only enlarged the maize phosphoproteome data, but also provided information for analyzing the molecular mechanism controlling maize anther development at genetic and biochemical levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13345/j.cjb.150449 | DOI Listing |
BMC Plant Biol
January 2025
College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
Background: Chinese cabbage is a cross-pollinated crop with remarkable heterosis, and male-sterile line is an important mean to produce its hybrids. In this study, a male-sterile mutant msm7 was isolated from a Chinese cabbage DH line 'FT' by using EMS-mutagenesis.
Results: Compared with the wild-type 'FT', the anthers of mutant msm7 were completely aborted, accompanied by the defects in leaf and petal development.
BMC Plant Biol
January 2025
Maize and Millet Research Institute, Yousafwala, Sahiwal, Pakistan.
Heat stress poses a significant challenge for maize production, especially during the spring when high temperatures disrupt cellular processes, impeding plant growth and development. The B-cell lymphoma-2 (Bcl-2) associated athanogene (BAG) gene family is known to be relatively conserved across various species. It plays a crucial role as molecular chaperone cofactors that are responsible for programmed cell death and tumorigenesis.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China. Electronic address:
The ABORTED MICROSPORES (AMS) gene is crucial for tapetal cell development and pollen formation, but its role in Upland cotton (Gossypium hirsutum) has not been previously documented. This study identified GhAMS11 as a key transcription factor, with its high expression specifically observed during the S4-S6 stages of anther development, a critical period for tapetal activity and pollen formation. Subcellular localization confirmed that GhAMS11 was located in the nucleus.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (JAAS), Changchun, China.
Alfalfa ( L.), a prominent perennial forage in the legume family, is widely cultivated across Europe and America. Given its substantial economic value for livestock, breeding efforts have focused on developing high-yield and high-quality varieties since the discovery of CMS lines.
View Article and Find Full Text PDFNat Commun
December 2024
Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
Lipid metabolism is critical for male reproduction in plants. Many lipid-metabolic genic male-sterility (GMS) genes function in the anther tapetal endoplasmic reticulum, while little is known about GMS genes involved in de novo fatty acid biosynthesis in the anther tapetal plastid. In this study, we identify a maize male-sterile mutant, enr1, with early tapetal degradation, defective anther cuticle, and pollen exine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!