While the soft chemistry of layered alkali metal oxides is adequately understood, the effect of the post-synthesis thermal treatment on their structure, composition, and properties has been underexplored. In this article, we thoroughly investigated the bulk and surface modifications of KMTiO (M = Ni, Cu, Zn) lepidocrocite titanate thermally treated within 200 °C above its synthetic temperature under air. This practice was typically employed in e.g., specimen fabrication for physical property measurements. We observed the expansion of the interlayer distance (b/2) accompanied by a reduction in layer charge density. These findings can be explained by the deintercalation of interlayer K ions and the loss of intralayer Ti, M, and O species. Meanwhile, the enrichment of potassium and carbonate on the surfaces was evident. The slight differences in dielectric properties of the pellets thermally treated at different temperatures were attributed to the combination of bulk and surface modifications. At 10 Hz and RT-250 °C, the maximum dielectric constants ε' of ∼10 with the dielectric loss (tan δ) ∼0.9-1.5 were obtained for KZnTiO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7dt03092d | DOI Listing |
Sci Rep
January 2025
School of Information Technology, Jiangsu Open University, Nanjing, 210017, China.
Because of its dimensional characteristics, two-dimensional (2D) materials exhibit many special properties. The key to researching their features is to prepare high-quality larger-area monolayer 2D materials. Metal-assisted mechanical exfoliation method offers the possibility.
View Article and Find Full Text PDFNanotechnology
January 2025
MME, Wright State University, 3640 Colonel Glenn Hwy, Lake Campus, 7600 Lake Drive, Lake Campus, Fairborn, Ohio, 45435, UNITED STATES.
Surface induced crystallization/amorphization of a Germanium-antimony-tellurium (GST) nanolayer is investigated using the phase field model. A Ginzburg-Landau (GL) equation introduces an external surface layer (ESL) within which the surface energy and elastic properties are properly distributed. Next, the coupled GL and elasticity equations for the crystallization/amorphization are solved.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Institute of Molecular Science, University of Valencia, Catedratico Jose Beltrán 2, 46980 Paterna, Spain.
The role of self-intercalation in 2D van der Waals materials is key to the understanding of many of their properties. Here we show that the magnetic ordering temperature of thin films of the 2D ferromagnet Fe_{5}GeTe_{2} is substantially increased by self-intercalated Fe that resides in the van der Waals gaps. The epitaxial films were prepared by molecular beam epitaxy and their magnetic properties explored by element-specific x-ray magnetic circular dichroism that showed ferromagnetic ordering up to 375 K.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States.
Self-organization under out-of-equilibrium conditions is ubiquitous in natural systems for the generation of hierarchical solid-state patterns of complex structures with intricate properties. Efforts in applying this strategy to synthetic materials that mimic biological function have resulted in remarkable demonstrations of programmable self-healing and adaptive materials. However, the extension of these efforts to multifunctional stimuli-responsive solid-state materials across defined spatial distributions remains an unrealized technological opportunity.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States.
In contrast to the traditional perspective that thermal fluctuations are insignificant in surface dynamics, here we report their influence on surface reaction dynamics. Using real-time low-energy electron microscopy imaging of NiAl(100) under both vacuum and O atmospheres, we demonstrate that transient temperature variations substantially alter the direction of atom diffusion between the surface and bulk, leading to markedly different oxidation outcomes. During heating, substantial outward diffusion of atoms from the bulk to the surface results in step growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!