AI Article Synopsis

  • The study explores how thermal treatment affects the structure and properties of layered alkali metal oxides, specifically KMTiO materials (with M being Ni, Cu, or Zn).
  • Thermal treatment at 200 °C above synthesis temperature leads to expansion of interlayer distance and reduction in layer charge density due to the loss of potassium ions and other species.
  • The research finds that these changes impact the dielectric properties of the materials, achieving maximum dielectric constants around ε' ∼10 for KZnTiO, with varying dielectric loss values depending on the treatment temperature.

Article Abstract

While the soft chemistry of layered alkali metal oxides is adequately understood, the effect of the post-synthesis thermal treatment on their structure, composition, and properties has been underexplored. In this article, we thoroughly investigated the bulk and surface modifications of KMTiO (M = Ni, Cu, Zn) lepidocrocite titanate thermally treated within 200 °C above its synthetic temperature under air. This practice was typically employed in e.g., specimen fabrication for physical property measurements. We observed the expansion of the interlayer distance (b/2) accompanied by a reduction in layer charge density. These findings can be explained by the deintercalation of interlayer K ions and the loss of intralayer Ti, M, and O species. Meanwhile, the enrichment of potassium and carbonate on the surfaces was evident. The slight differences in dielectric properties of the pellets thermally treated at different temperatures were attributed to the combination of bulk and surface modifications. At 10 Hz and RT-250 °C, the maximum dielectric constants ε' of ∼10 with the dielectric loss (tan δ) ∼0.9-1.5 were obtained for KZnTiO.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7dt03092dDOI Listing

Publication Analysis

Top Keywords

bulk surface
12
surface modifications
12
soft chemistry
8
lepidocrocite titanate
8
post-synthesis thermal
8
thermal treatment
8
thermally treated
8
chemistry bulk
4
modifications polycrystalline
4
polycrystalline lepidocrocite
4

Similar Publications

Because of its dimensional characteristics, two-dimensional (2D) materials exhibit many special properties. The key to researching their features is to prepare high-quality larger-area monolayer 2D materials. Metal-assisted mechanical exfoliation method offers the possibility.

View Article and Find Full Text PDF

Surface induced crystallization/amorphization of phase change materials.

Nanotechnology

January 2025

MME, Wright State University, 3640 Colonel Glenn Hwy, Lake Campus, 7600 Lake Drive, Lake Campus, Fairborn, Ohio, 45435, UNITED STATES.

Surface induced crystallization/amorphization of a Germanium-antimony-tellurium (GST) nanolayer is investigated using the phase field model. A Ginzburg-Landau (GL) equation introduces an external surface layer (ESL) within which the surface energy and elastic properties are properly distributed. Next, the coupled GL and elasticity equations for the crystallization/amorphization are solved.

View Article and Find Full Text PDF

The role of self-intercalation in 2D van der Waals materials is key to the understanding of many of their properties. Here we show that the magnetic ordering temperature of thin films of the 2D ferromagnet Fe_{5}GeTe_{2} is substantially increased by self-intercalated Fe that resides in the van der Waals gaps. The epitaxial films were prepared by molecular beam epitaxy and their magnetic properties explored by element-specific x-ray magnetic circular dichroism that showed ferromagnetic ordering up to 375 K.

View Article and Find Full Text PDF

Self-organization under out-of-equilibrium conditions is ubiquitous in natural systems for the generation of hierarchical solid-state patterns of complex structures with intricate properties. Efforts in applying this strategy to synthetic materials that mimic biological function have resulted in remarkable demonstrations of programmable self-healing and adaptive materials. However, the extension of these efforts to multifunctional stimuli-responsive solid-state materials across defined spatial distributions remains an unrealized technological opportunity.

View Article and Find Full Text PDF

In contrast to the traditional perspective that thermal fluctuations are insignificant in surface dynamics, here we report their influence on surface reaction dynamics. Using real-time low-energy electron microscopy imaging of NiAl(100) under both vacuum and O atmospheres, we demonstrate that transient temperature variations substantially alter the direction of atom diffusion between the surface and bulk, leading to markedly different oxidation outcomes. During heating, substantial outward diffusion of atoms from the bulk to the surface results in step growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!